分析 以AD所在直線為x軸,BC所在直線為y軸,建立直角坐標系,由平行線的性質(zhì)定理可得OD=1,運用勾股定理進而得到OC,OD,求得A,B,C,D的坐標,由向量的數(shù)量積的坐標表示,計算即可得到.
解答 解:以AD所在直線為x軸,BC所在直線為y軸,建立直角坐標系,
由AB∥CD可得,$\frac{OD}{OA}$=$\frac{CD}{BA}$,
即為$\frac{OD}{OD+2}$=$\frac{2}{6}$,解得OD=1,
可得OC=$\sqrt{4-1}$=$\sqrt{3}$,OB=$\sqrt{36-9}$=3$\sqrt{3}$,
即有A(3,0),D(1,0),B(0,3$\sqrt{3}$),C(0,$\sqrt{3}$),
則$\overrightarrow{AC}$•$\overrightarrow{BD}$=(-3,$\sqrt{3}$)•(1,-3$\sqrt{3}$)=-3•1+$\sqrt{3}$•(-3$\sqrt{3}$)=-12.
故答案為:-12.
點評 本題考查向量的數(shù)量積的求法,注意運用坐標法,同時考查向量的數(shù)量積的坐標表示,以及平行線的性質(zhì)定理,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y+1=0 | B. | 2x-y-1=0 | C. | 2x+y+1=0 | D. | 2x+y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (1,2) | C. | (-∞,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-$\frac{π}{2}$ | B. | x=-$\frac{π}{4}$ | C. | x=$\frac{π}{8}$ | D. | x=$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | -6 | C. | -2 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com