【題目】已知兩點(diǎn),,給出下列曲線方程:(1;(2;(3;(4,在曲線上存在點(diǎn)滿足的所有曲線是(

A.1)(2)(3)(4B.2)(3

C.1)(4D.2)(3)(4

【答案】B

【解析】

求出線段MN的垂直平分線方程,然后分別和題目給出的四條曲線方程聯(lián)立,利用判別式判斷直線和曲線的交點(diǎn)情況,從而判斷給出的曲線上是否存在點(diǎn)P,使得||PA||PB|

A1,),B(﹣4,),

AB的中點(diǎn)坐標(biāo)為(,0),

AB的垂直平分線方程為y0=﹣2x),即y=﹣2x3

1)∵直線y=﹣2x3與直線4x+2y10平行,

∴直線4x+2y10上不存在點(diǎn)P,使|PA||PB|;

2)聯(lián)立,得5x2+12x+60,△=1224×5×6240

∴直線y=﹣2x3x2+y23有交點(diǎn),曲線x2+y23上存在點(diǎn)P滿足|PA||PB|;

3)聯(lián)立,得,方程有解,

∴直線y=﹣2x3x21有交點(diǎn),曲線x21上存在點(diǎn)P滿足|PA||PB|;

4)聯(lián)立,得8x2+12x+50,△=1224×8×5=﹣160

∴直線y=﹣2x3x21沒(méi)有交點(diǎn),曲線x21上不存在點(diǎn)P滿足|PA||PB|

∴曲線上存在點(diǎn)P滿足|PA||PB|的所有曲線是(2)(3).

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知圓的參數(shù)方程為為參數(shù),).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程是.

(1)若直線與圓有公共點(diǎn),試求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),過(guò)點(diǎn)且與直線平行的直線交圓兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中a∈R.

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng) 時(shí),設(shè)、為曲線上任意兩點(diǎn),曲線在點(diǎn)處的切線斜率為k,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且滿足,,設(shè),則以下四個(gè)命題:(1是等差數(shù)列;(2中最大項(xiàng)是;(3通項(xiàng)公式是;(4.其中真命題的序號(hào)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖像相交于點(diǎn),兩點(diǎn),若動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從數(shù)列中取出部分項(xiàng)組成的數(shù)列稱為數(shù)列子數(shù)列”.

1)若等差數(shù)列的公差,其子數(shù)列恰為等比數(shù)列,其中,,求;

2)若,,判斷數(shù)列是否為子數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市政府招商引資,為吸引外商,決定第一個(gè)月產(chǎn)品免稅,某外資廠該第一個(gè)月A型產(chǎn)品出廠價(jià)為每件10元,月銷售量為6萬(wàn)件;第二個(gè)月,當(dāng)?shù)卣_(kāi)始對(duì)該商品征收稅率為 ,即銷售1元要征收元)的稅收,于是該產(chǎn)品的出廠價(jià)就上升到每件元,預(yù)計(jì)月銷售量將減少p萬(wàn)件.

1)將第二個(gè)月政府對(duì)該商品征收的稅收y(萬(wàn)元)表示成p的函數(shù),并指出這個(gè)函數(shù)的定義域;

2)要使第二個(gè)月該廠的稅收不少于1萬(wàn)元,則p的范圍是多少?

3)在第(2)問(wèn)的前提下,要讓廠家本月獲得最大銷售金額,則p應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(管道構(gòu)成Rt△FHE,H是直角項(xiàng)點(diǎn))來(lái)處理污水.管道越長(zhǎng),污水凈化效果越好.設(shè)計(jì)要求管道的接口H是AB的中點(diǎn),E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長(zhǎng)度L表示為的函數(shù),并寫(xiě)出定義域;

(2)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的長(zhǎng)度L.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)存在兩個(gè)零點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)若,求證: .

查看答案和解析>>

同步練習(xí)冊(cè)答案