20.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上、下頂點分別為A,B,右焦點為F,點$P(\frac{{2\sqrt{13}}}{13},\frac{{2\sqrt{39}}}{13})$在橢圓C上,且OP⊥AF.
(1)求橢圓C的方程;
(2)設(shè)不經(jīng)過頂點A,B的直線l與橢圓交于兩個不同的點M(x1,y1),N(x2,y2),且$\frac{1}{x_1}+\frac{1}{x_2}=2$,求橢圓右頂點D到直線l距離的取值范圍.

分析 (1)由已知點P的坐標(biāo)可得OP所在直線的斜率,再由AF⊥OP,得到b,c的關(guān)系,再由P在橢圓上,結(jié)合隱含條件即可求得a,b,則橢圓方程可求;
(2)當(dāng)直線l的斜率不存在時,方程為:x=1,此時d=1.當(dāng)直線l的斜率存在時,設(shè)直線l的方程為:y=kx+m(m≠±1),聯(lián)立直線方程和橢圓方程,化為關(guān)于x的一元二次方程,利用判別式大于0及$\frac{1}{x_1}+\frac{1}{x_2}=2$,可得k與m的關(guān)系,進(jìn)一步得到m的范圍,由點到直線的距離公式求出橢圓右頂點D到直線l距離,換元后利用基本不等式求得答案.

解答 解:(1)∵點$P(\frac{{2\sqrt{13}}}{13},\frac{{2\sqrt{39}}}{13})$,∴${k_{OP}}=\sqrt{3}$,
又∵AF⊥OP,∴$-\frac{c}×\sqrt{3}=-1$,得$c=\sqrt{3}b$,∴a2=4b2
又點$P(\frac{{2\sqrt{13}}}{13},\frac{{2\sqrt{39}}}{13})$在橢圓上,
∴$\frac{{\frac{4}{13}}}{a^2}+\frac{{\frac{12}{13}}}{b^2}=\frac{{\frac{4}{13}}}{{4{b^2}}}+\frac{{\frac{12}{13}}}{b^2}=\frac{13}{{13{b^2}}}=1$,
解得a2=4,b2=1,
故橢圓方程為$\frac{x^2}{4}+{y^2}=1$;
(2)當(dāng)直線l的斜率不存在時,方程為:x=1,此時d=1.
當(dāng)直線l的斜率存在時,設(shè)直線l的方程為:y=kx+m(m≠±1),
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,得(4k2+1)x2+8kmx+4(m2-1)=0,
設(shè)點M(x1,y1),N(x2,y2),
△>0,得4k2-m2+1>0,①
由根與系數(shù)的關(guān)系:$\left\{{\begin{array}{l}{{x_1}+{x_2}=\frac{-8km}{{4{k^2}+1}}}\\{{x_1}{x_2}=\frac{{4({m^2}-1)}}{{4{k^2}+1}}}\end{array}}\right.$,
由$\frac{1}{x_1}+\frac{1}{x_2}=2⇒({x_1}+{x_2})=2{x_1}{x_2}⇒\frac{-8km}{{4{k^2}+1}}=2\frac{{4({m^2}-1)}}{{4{k^2}+1}}$,
即:$km=1-{m^2}⇒k=\frac{1}{m}-m(≠0)$,②
把②式代入①式得:${m^2}>\frac{4}{3}$或0<m2<1,
橢圓右頂點D(2,0)到直線l的距離:
$d=\frac{{|{2k+m}|}}{{\sqrt{{k^2}+1}}}=\frac{{|{\frac{2}{m}-m}|}}{{\sqrt{\frac{1}{m^2}+{m^2}-1}}}=\frac{{|{2-{m^2}}|}}{{\sqrt{{m^4}-{m^2}+1}}}$=$\sqrt{\frac{{{m^4}-4{m^2}+4}}{{{m^4}-{m^2}+1}}}=\sqrt{1-\frac{{3({m^2}-1)}}{{{m^4}-{m^2}+1}}}$,
令${m^2}-1=t∈(-1,0)∪(\frac{1}{3},+∞)$,
則$d=\sqrt{1-\frac{3t}{{{t^2}+t+1}}}=\sqrt{1-\frac{3}{{t+\frac{1}{t}+1}}}∈[0,1)∪(1,2)$,
綜上可知:d∈[0,2).

點評 本題考查橢圓的簡單性質(zhì),考查了直線與圓錐曲線位置關(guān)系的應(yīng)用,考查計算能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)$f(x)=\frac{3cosx+1}{2-cosx}(-\frac{π}{3}<x<\frac{π}{3})$,則f(x)的值域為$(\frac{5}{3},4]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=sinx+cos2x的值域是[-2,$\frac{9}{8}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}是公差不為零的等差數(shù)列a1=1,且a1,a2,a5成等比數(shù)列,{bn}為等比數(shù)列,數(shù)列{bn}的前n項和為Sn,${S_3}=\frac{13}{3}$,q=3.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=an•bn,求數(shù)列{cn}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在單位圓x2+y2=1中(含邊界)任取一點M,則點M落在第一象限的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的焦點是F1、F2,且點P是雙曲線上的一點,若∠F1PF2=60°,求三角形F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若A(1,0),B(0,-1),則|$\overrightarrow{AB}$|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.四面體ABCD的四個頂點都在球O的球面上,AB=AD=CD=2,BD=2$\sqrt{2}$,BD⊥CD,平面ABD⊥平面BCD,則球O的體積為(  )
A.4$\sqrt{3}$πB.$\frac{\sqrt{3}}{2}$πC.$\frac{8\sqrt{2}}{3}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.為了得到函數(shù)y=cos(2x-$\frac{2π}{3}}$)的圖象,可以將函數(shù)y=cos2x的圖象( 。
A.向左平移$\frac{π}{6}$個單位長度B.向左平移$\frac{π}{3}$個單位長度
C.向右平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{3}$個單位長度

查看答案和解析>>

同步練習(xí)冊答案