10.為了得到函數(shù)y=cos(2x-$\frac{2π}{3}}$)的圖象,可以將函數(shù)y=cos2x的圖象( 。
A.向左平移$\frac{π}{6}$個單位長度B.向左平移$\frac{π}{3}$個單位長度
C.向右平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{3}$個單位長度

分析 根據(jù)左加右減,看出三角函數(shù)的圖象平移的方向,再根據(jù)平移的大小確定函數(shù)式中平移的單位,這里的平移的大小,是針對于x的系數(shù)是1來說的.

解答 解:∵y=cos(2x-$\frac{2π}{3}}$)=cos[2(x-$\frac{π}{3}$)],
∴將函數(shù)y=cos2x的圖象向右平移$\frac{π}{3}$個單位,即可得到y(tǒng)=cos2(x-$\frac{π}{3}$)=cos(2x-$\frac{2π}{3}}$)的圖象.
故選:D.

點評 本題考查三角函數(shù)圖象的變換,本題解題的關(guān)鍵是理解圖象平移的原則,本題是一個易錯題,特別是x的系數(shù)不等于1時容易出錯.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上、下頂點分別為A,B,右焦點為F,點$P(\frac{{2\sqrt{13}}}{13},\frac{{2\sqrt{39}}}{13})$在橢圓C上,且OP⊥AF.
(1)求橢圓C的方程;
(2)設(shè)不經(jīng)過頂點A,B的直線l與橢圓交于兩個不同的點M(x1,y1),N(x2,y2),且$\frac{1}{x_1}+\frac{1}{x_2}=2$,求橢圓右頂點D到直線l距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=cos(2x+$\frac{π}{6}$)的一條對稱軸為( 。
A.$\frac{π}{6}$B.$\frac{5π}{12}$C.$\frac{2π}{3}$D.-$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.“α=$\frac{π}{6}$”是“tanα=$\frac{\sqrt{3}}{3}$”( 。l件.
A.必要不充分B.充分不必要
C.充分必要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)等比數(shù)列{an}中,前n項和為Sn,已知S3=8,S6=7,則a2=-$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知m,n表示兩條不同直線,α表示平面,有下列四個命題,其中正確的命題的個數(shù)(  )
①若m∥α,n∥α,則m∥n;②若m∥n,n?α,則m∥α;③若m⊥α,m⊥n,則n∥α;④若m∥α,m⊥n,則n⊥α
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)-1.
(1)求f(x)的最小正周期和增區(qū)間
(2)(6分)當(dāng)x∈[-$\frac{π}{6},\frac{π}{4}$]時,求f(x)的最大值和最小值,并指出f(x)取得最值時對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的焦距為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知U=R,函數(shù)y=ln(1-x)的定義域為M,N={x|x2-x<0},則下列結(jié)論正確的是(  )
A.M∩N=MB.M∪(∁UN)=UC.M∩(∁UN)=∅D.M⊆∁UN

查看答案和解析>>

同步練習(xí)冊答案