16.已知雙曲線的離心率為$\sqrt{3}$,一個焦點到一條漸近線的距離為2,則該雙曲線的方程可以是(  )
A.x2-$\frac{y^2}{4}$=1B.x2-$\frac{y^2}{2}$=1C.$\frac{y^2}{2}-\frac{x^2}{4}$=1D.$\frac{y^2}{4}-\frac{x^2}{2}$=1

分析 根據(jù)一個焦點到一條漸近線的距離為2,離心率的值,建立方程關(guān)系求出a,b的值即可得到結(jié)論.

解答 解:設(shè)雙曲線的一個焦點為F(c,0),雙曲線的一條漸近線為y=$±\frac{a}x$,取bx-ay=0,
所以焦點到漸近線的距離d=$\frac{|bc|}{\sqrt{{a}^{2}+^{2}}}=\frac{bc}{c}=b$=2,
∵離心率e=$\frac{c}{a}$=$\sqrt{3}$,∴c=$\sqrt{3}a$,
則c2=a2+b2,
即3a2=a2+4,
即2a2=4,則a2=2,
則該雙曲線的方程可以是$\frac{y^2}{2}-\frac{x^2}{4}$=1,
故選:C.

點評 本題主要考查雙曲線標準方程的求解,根據(jù)條件分別求出a,b的值是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.數(shù)列通項an=$\frac{n-\sqrt{97}}{n-\sqrt{98}}$,前30項中最大項和最小項分別是$\frac{10-\sqrt{97}}{10-\sqrt{98}}$;$\frac{9-\sqrt{97}}{9-\sqrt{98}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)y=f(x)的定義域為R,當x>0時,f(x)>1,且對任意的x,y∈R都有f(x+y)=f(x)•f(y),則不等式f(log${\;}_{\frac{1}{2}}$x)≤$\frac{1}{f(lo{g}_{\frac{1}{2}}x+1)}$的解集為[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.$\sqrt{3}π$B.$2\sqrt{3}π$C.$({3+\sqrt{3}})π$D.$({3+2\sqrt{3}})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.己知O為坐標原點,雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩條漸近線分別為l1,l2,右焦點為F,以O(shè)F為直徑作圓交l1于異于原點O的點A,若點B在l2上,且$\overrightarrow{AB}$=2$\overrightarrow{FA}$,則雙曲線的離心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={0,1},B={2,3},M={x|x=ab(a+b),a∈A,b∈B},則集合M的真子集的個數(shù)是( 。
A.16B.15C.8D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.函數(shù)f(x)=$\sqrt{|x|+|{x+1}|-3}$.
(1)求函數(shù)f(x)的定義域A;
(2)設(shè)B={x|-1<x<2},當實數(shù)a,b∈(B∩(∁RA))時,證明:$\frac{{|{a+b}|}}{2}$<|1+$\frac{ab}{4}}$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖的程序框圖,如果輸入x=1,則輸出t的值為(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,輸出S的值是(  )
A.$-\frac{{\sqrt{3}}}{2}$B.0C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習冊答案