7.數(shù)列通項an=$\frac{n-\sqrt{97}}{n-\sqrt{98}}$,前30項中最大項和最小項分別是$\frac{10-\sqrt{97}}{10-\sqrt{98}}$;$\frac{9-\sqrt{97}}{9-\sqrt{98}}$.

分析 an=$\frac{n-\sqrt{98}+\sqrt{98}-\sqrt{97}}{n-\sqrt{98}}$=1+$\frac{\sqrt{98}-\sqrt{97}}{n-\sqrt{98}}$,當n≤9時,數(shù)列{an}單調(diào)遞增;當n≥10時,數(shù)列{an}單調(diào)遞減.即可得出.

解答 解:an=$\frac{n-\sqrt{97}}{n-\sqrt{98}}$=$\frac{n-\sqrt{98}+\sqrt{98}-\sqrt{97}}{n-\sqrt{98}}$=1+$\frac{\sqrt{98}-\sqrt{97}}{n-\sqrt{98}}$,
當n≤9時,數(shù)列{an}單調(diào)遞增,且a9<1;當n≥10時,數(shù)列{an}單調(diào)遞減,且a10>1.
∴前30項中最大項和最小項分別是a10=$\frac{10-\sqrt{97}}{10-\sqrt{98}}$,a9=$\frac{9-\sqrt{97}}{9-\sqrt{98}}$.
故答案分別為:$\frac{10-\sqrt{97}}{10-\sqrt{98}}$;$\frac{9-\sqrt{97}}{9-\sqrt{98}}$.

點評 本題考查了數(shù)列與函數(shù)的單調(diào)性,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.判斷下列各題中直線的位置關系,若相交,求出交點坐標.
(1)l1:2x+y+3=0,l2:x-2y-1=0;
(2)l1:x+y+2=0,l2:2x+2y+3=0;
(3)l1:x-y+1=0,l2:2x-2y+2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知斜△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,c=1,C=$\frac{π}{3}$,若sinC+sin(A-B)=3sin2B,則△ABC的面積為$\frac{\sqrt{3}}{6}$或$\frac{3\sqrt{3}}{28}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.若復數(shù)z滿足z2=$\frac{3}{4}$-i(i為虛數(shù)單位),則z的模為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若2,a,b,c,d,18$\sqrt{3}$六個數(shù)成等比數(shù)列,則log9$\frac{{a}^{2}+^{2}}{{c}^{2}+6166111^{2}}$=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在矩形ABCD中,AB=2AD,E是CD的中點,以AE為折痕將△ADE向上折起,使D到P點位置,且PC=PB.
(1)若F是BP的中點,求證:CF∥平面APE;
(2)求證:平面APE⊥平面ABCE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點分別為F1、F2,焦距為6,過右焦點F2向其中一條漸近線作垂線F2H,交漸近線于H點,當△F1F2H的周長取最大值時,雙曲線的離心率e=( 。
A.$\sqrt{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{2\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.經(jīng)過兩點A(-m,6)、B(1,3m)的直線的斜率是6,則m的值為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知雙曲線的離心率為$\sqrt{3}$,一個焦點到一條漸近線的距離為2,則該雙曲線的方程可以是( 。
A.x2-$\frac{y^2}{4}$=1B.x2-$\frac{y^2}{2}$=1C.$\frac{y^2}{2}-\frac{x^2}{4}$=1D.$\frac{y^2}{4}-\frac{x^2}{2}$=1

查看答案和解析>>

同步練習冊答案