9.已知雙曲線C:$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{n}$=1,曲線f(x)=ex在點(0,1)處的切線方程為2mx-ny+1=0,則該雙曲線的漸近線方程為(  )
A.y=±$\sqrt{2}$xB.y=±2xC.y=±$\frac{\sqrt{2}}{2}$xD.y=±$\frac{1}{2}$x

分析 求函數(shù)的導數(shù),根據(jù)導數(shù)的幾何意義建立方程組關系求出m,n的值,利用雙曲線的漸近線的性質進行求解即可.

解答 解:∵(x)=ex
∴f′(x)=ex,
則f′(0)=e0=1,
則曲線f(x)=ex在點(0,1)處的切線方程為y-1=x,即x-y-1=0,
∵f(x)=ex在點(0,1)處的切線方程為2mx-ny+1=0,
∴$\left\{\begin{array}{l}{2m=1}\\{-n=-1}\end{array}\right.$得$\left\{\begin{array}{l}{m=\frac{1}{2}}\\{n=1}\end{array}\right.$,
則雙曲線的方程為$\frac{{x}^{2}}{\frac{1}{2}}-\frac{{y}^{2}}{1}=1$,
則雙曲線的漸近線方程為y=$±\sqrt{2}$x,
故選:A.

點評 本題主要考查雙曲線漸近線的求解,根據(jù)導數(shù)的幾何意義求出參數(shù)m,n的值是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=xlnx+(x-1)2,且x0是函數(shù)f(x)的極值點.給出以下幾個結論:
①$0<{x_0}<\frac{1}{e}$;
②$\frac{1}{e}<{x_0}<1$;
③f(x0)+x0<0;
④f(x0)+x0>0
其中結論正確的是②④.(寫出所有正確結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.偶函數(shù)f(x)滿足f(1-x)=f(1+x),且在x∈[0,1]時,f(x)=$\sqrt{2x-{x}^{2}}$,若直線kx-y+k=0(k>0)與函數(shù)f(x)的圖象有且僅有三個交點,則k的取值范圍是$(\frac{{\sqrt{15}}}{15},\frac{{\sqrt{3}}}{3})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知Sn是等差數(shù)列{an}的前n項和,且S6>S7>S5,有下列五個說法:
①S6為Sn的最大值,②S11>0,③S12<0,④S13<0,⑤S8-S5>0,
其中說法正確的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.以下四個命題中,正確的個數(shù)是( 。
①命題“若f(x)是周期函數(shù),則f(x)是三角函數(shù)”的否命題是“若f(x)是周期函數(shù),則f(x)不是三角函數(shù)”;
②命題“存在x∈R,x2-x>0”的否定是“對于任意x∈R,x2-x<0”;
③在△ABC中,“sinA>sinB”是“A>B”成立的充要條件;
④若函數(shù)f(x)在(2015,2017)上有零點,則一定有f(2015)•f(2017)<0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)上存在一點P,與坐標原點O,右焦點F2構成正三角形,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{3}$C.$\sqrt{3}$+1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在極坐標系中,圓C的極坐標方程為ρ=$\sqrt{2}$cos(θ+$\frac{π}{4}$),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{4}{5}t}\\{y=-1-\frac{3}{5}t}\end{array}\right.$(t為參數(shù)),求直線l被圓C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖所示的程序框圖中,若f(x)=sinx,g(x)=cosx,x∈[0,$\frac{π}{2}$],且h(x)≥m恒成立,則m的最大值是( 。
A.1B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在平面直角坐標系xOy中,已知直線l:x+y+a=0,與點A(0,2),若直線l上存在點M滿足|$\overrightarrow{MA}$|2+|$\overrightarrow{MO}$|2=7(O為原點),則實數(shù)a的取值范圍是( 。
A.(-$\sqrt{5}$-1,$\sqrt{5}$-1)B.[-$\sqrt{5}$-1,$\sqrt{5}$-1]C.(-2$\sqrt{2}$-1,2$\sqrt{2}$-1)D.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]

查看答案和解析>>

同步練習冊答案