11.某研究性學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如表
使用智能手機(jī)不使用智能手機(jī)合計(jì)
學(xué)習(xí)成績(jī)優(yōu)秀4812
學(xué)習(xí)成績(jī)不優(yōu)秀16218
合計(jì)201030
附表:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
經(jīng)計(jì)算K2=10,則下列選項(xiàng)正確的是:( 。
A.有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
B.有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響
C.有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響
D.有99.9%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)無(wú)影響

分析 根據(jù)觀測(cè)值K2,對(duì)照數(shù)表,即可得出正確的結(jié)論.

解答 解:因?yàn)?.879<K2=10<10.828,
對(duì)照數(shù)表知,有99.5%的把握認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)有影響.
故選:A.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖,已知拋物線(xiàn)y2=4x的焦點(diǎn)為F,過(guò)F的直線(xiàn)AB交拋物線(xiàn)于A、B,交拋物線(xiàn)的準(zhǔn)線(xiàn)于點(diǎn)C,若$\frac{{|{BF}|}}{{|{BC}|}}$=$\frac{1}{2}$,則|AB|=$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖:在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AA1=a,BC=$\sqrt{2}$a,M分別是AD的中點(diǎn).
(1)求證B1C1∥平面A1BC;
(2)求平面A1MC與底面ABCD所成二面角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)=lnx-\frac{1}{x},g(x)=x+\frac{1}{x}$.
( I)證明:函數(shù)f(x)在[1,e]上存在唯一的零點(diǎn);
(Ⅱ)若g(x)≥af(x)在[1,e]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$,設(shè)P為曲線(xiàn)C1上的動(dòng)點(diǎn),當(dāng)點(diǎn)C1到曲線(xiàn)C2上點(diǎn)的距離最小時(shí),點(diǎn)P的直角坐標(biāo)為$(\frac{3}{2},\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.為了調(diào)查某中學(xué)學(xué)生在周日上網(wǎng)的瞬間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問(wèn)卷調(diào)查,得到了如下統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間(分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
人 數(shù)525302515
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
上網(wǎng)時(shí)間 (分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
人數(shù)1020402010
(1)若該中學(xué)共有女生600人,試估計(jì)其中上網(wǎng)時(shí)間不少于60分鐘的人數(shù);
(2)完成表3的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“學(xué)生周日上網(wǎng)時(shí)間與性別有關(guān)”?
(3)從表3的男生“上網(wǎng)時(shí)間少于60分鐘”和“上網(wǎng)時(shí)間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個(gè)容量為5的樣本,再?gòu)闹腥稳?人,求至少有一人上網(wǎng)時(shí)間不少于60分鐘的概率.
表3
上網(wǎng)時(shí)間少于60分鐘上網(wǎng)時(shí)間不少于60分鐘合計(jì)
男生
女生
合計(jì)
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|x|+|x+1|.
(I)?m∈R,使得m2+2m+f(t)=0成立,求實(shí)數(shù)t的取值范圍;
(Ⅱ)設(shè)g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,求函數(shù)|g(x)|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=PA=4,A點(diǎn)在PD上的射影為G點(diǎn),E點(diǎn)在AB上,平面PCE⊥平面PCD.
(1)求證:AG⊥平面PCD;
(2)求直線(xiàn)PD與平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$,x∈R
(1)求函數(shù)y=f(3x)的最小正周期和單調(diào)遞減區(qū)間;
(2)已知銳角△ABC中的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且a=7,sinB+sinC=$\frac{13}{7}$sinA,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案