3.已知函數(shù)f(x)=ex-1-ax(a>1)在[0,a]上的最小值為f(x0),且x0<2,則實數(shù)a的取值范圍是( 。
A.(1,2)B.(1,e)C.(2,e)D.($\frac{e}{2}$,+∞)

分析 由已知得f′(x)=ex-1-a,令f′(x)=0,得x=1+lna>1,令g(a)=a-1-lna,其中a>1,則g′(a)=1-$\frac{1}{a}$=$\frac{a-1}{a}$,從而得到g(1)=0,當(dāng)a>1時,a>1+lna,進而得到f(x)在x=1+lna處取得最小值,由此能求出實數(shù)a的取值范圍.

解答 解:∵f(x)=ex-1-ax(a>1),
∴f′(x)=ex-1-a,
令f′(x)=0,解得x=1+lna>1,
令g(a)=a-1-lna,其中a>1,則g′(a)=1-$\frac{1}{a}$=$\frac{a-1}{a}$,
∴g(a) 在(1,+∞)上遞增,
又g(1)=1-1-ln1=0,
∴當(dāng)a>1時,g(a)=a-1-lna>0,
即a>1+lna,
∴當(dāng)0<x<1+lna時,f′(x)<0,
1+lna<x<a時,f′(x)>0,
∴f(x)在x=1+lna處取得最小值,
由x0=1+lna<2,得a<e,
∴實數(shù)a的取值范圍是(1,e).
故選:B.

點評 本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意導(dǎo)數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下面是關(guān)于向量的四個命題,其中的真命題為( 。
p1:同一組基底下的同一向量的表現(xiàn)形式是唯一的.
p2:$\overrightarrow{a}$∥$\overrightarrow{c}$是($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)的充分條件.
p3:在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$<0,則△ABC為鈍角三角形.
p4:已知|$\overrightarrow{a}$|=2,向量$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{3}{4}$π,則$\overrightarrow{a}$在$\overrightarrow$上的投影是$\sqrt{2}$.
A.p1,p2B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{4π}{3}$B.$\frac{5π}{3}$C.D.$π+\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.小孔家有爺爺、奶奶、姥爺、姥姥、爸爸、媽媽,包括他共7人,一天爸爸從果園里摘了7個大小不同的梨,給家里每人一個,小孔拿了最小的一個,爺爺、奶奶、姥爺、姥姥4位老人之一拿最大的一個,則梨子的不同分法共有( 。
A.96種B.120種C.480種D.720種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列可能是函數(shù)f(x)=sin(2x+$\frac{π}{4}$)對稱軸的是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{8}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=xlnx-ax2+a(a∈R),其導(dǎo)函數(shù)為f′(x).
(Ⅰ)求函數(shù)g(x)=f′(x)+(2a-1)x的極值;
(Ⅱ)當(dāng)x>1時,關(guān)于x的不等式f(x)<0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=1+2i(i為虛數(shù)單位),$\overrightarrow{z}$為z的共軛復(fù)數(shù),則下列結(jié)論正確的是( 。
A.$\overrightarrow{z}$的實部為-1B.$\overrightarrow{z}$的虛部為-2iC.z•$\overrightarrow{z}$=5D.$\frac{\overrightarrow{z}}{z}$=i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等比數(shù)列{an}為遞增數(shù)列,且$a_5^2={a_{10}}$,2(a1+a3)=5a2
(1)求數(shù)列{an}的通項公式;
(2)令${b_n}={a_n}+{(-1)^n}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校安排5個班到4個工廠進行社會實踐,每個班取一個工廠,每個工廠至少安排一個班,不同的安排方法共有240 種.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案