在三位正整數(shù)的集合中有多少個數(shù)是5的倍數(shù)?求它們的和.
考點:等差數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:由題意可得所求數(shù)列為100為首項,5為公差的等差數(shù)列,共180項,由等差數(shù)列的求和公式可得.
解答: 解:三位正整數(shù)從100到999,
其中5的倍數(shù)構(gòu)成100為首項,5為公差的等差數(shù)列,
最后一項為995,故995=100+5(n-1),
解得n=180,即共180項,
故它們的和S=
180(100+995)
2
=98550
點評:本題考查等差數(shù)列的通項公式和求和公式,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,AB=2,AC=1,∠BAC=120°,O是△ABC的外心,若
AO
=x1
AB
+x2
AC
,則x1•x2的值為(  )
A、2
B、
13
6
C、
10
9
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從四面體的四個面中任意取出一個面,這個面的形狀恰好為直角三角形的概率最大值為( 。
A、1
B、
3
4
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:平行四邊形ABCD,AB=1,BC=2,∠BAD=60°,E為AD中點.將?ABCD沿BE折成直二面角.
(1)求證:CE⊥AB;
(2)求點B到面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m,n是方程x2+(2-k)x+k2+3k+5=0(k∈R)的兩個實根,求m2+n2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對實數(shù)a和b,定義運算“?”:a?b=
a,a-b≤1
b,a-b>1
,設(shè)函數(shù)f(x)=(x2-2)?(x-1),x∈R,
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)=c恰有兩個實根,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的半焦距為c(c>0),左焦點為F,右頂點為A,拋物線y2=
15
8
(a+c)x
與橢圓交于B、C兩點,若四邊形ABFC是菱形,則橢圓的離心率是( 。
A、
8
15
B、
4
15
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E與雙曲線
x2
3
-y2=1焦點相同,且過點(2,
5
3
),
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線AB和直線CD均過原點且互相垂直,若A,B,C,D四點都在橢圓E上,求四邊形ACBD面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的不等式ax2-2ax+1>0
(1)若對于一切實數(shù)x都成立,求a的取值范圍;
(2)若對于a∈[1,2]恒成立,求x的取值范圍.

查看答案和解析>>

同步練習冊答案