3.為了了解某省中小學(xué)對(duì)校園足球的普及狀況,對(duì)其中的90所省示范性中小學(xué)進(jìn)行了調(diào)查,得到如下2×2列聯(lián)表:
校級(jí)之間有足球比賽校級(jí)之間沒(méi)有足球比賽合計(jì)
有標(biāo)準(zhǔn)足球場(chǎng)402060
沒(méi)有標(biāo)準(zhǔn)足球場(chǎng)102030
合計(jì)504090
(1)判斷“能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為校級(jí)之間有足球比賽與該校有標(biāo)準(zhǔn)足球場(chǎng)有關(guān)”;
(2)甲乙兩所學(xué)校舉行足球友誼比賽,共比賽2場(chǎng),每場(chǎng)比賽可能有勝、負(fù)、平三個(gè)結(jié)果,已知甲隊(duì)勝、甲隊(duì)負(fù)、兩隊(duì)平是等可能的,求甲隊(duì)至少勝一場(chǎng)的概率.
臨界值參考表:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.7022.7063.8415.0246.6357.87910.828
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (1)根據(jù)列聯(lián)表中的數(shù)據(jù),計(jì)算K2的值,對(duì)照數(shù)表即可得出結(jié)論;
(2)甲乙兩所學(xué)校每一場(chǎng)比賽,甲隊(duì)勝的概率是$\frac{1}{3}$,由此求出比賽2場(chǎng)時(shí)甲隊(duì)至少勝一場(chǎng)的概率.

解答 解:(1)根據(jù)列聯(lián)表中的數(shù)據(jù),計(jì)算K2=$\frac{90{×(40×20-20×10)}^{2}}{60×30×40×50}$=9>6.635,
所以能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為校級(jí)之間有足球比賽與該校有標(biāo)準(zhǔn)足球場(chǎng)有關(guān);
(2)甲乙兩所學(xué)校每一場(chǎng)比賽,甲隊(duì)勝的概率是$\frac{1}{3}$,
所以甲乙兩所學(xué)校比賽2場(chǎng),甲隊(duì)至少勝一場(chǎng)的概率是:
P=1-${C}_{2}^{2}$•${(1-\frac{1}{3})}^{2}$=$\frac{5}{9}$.

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)與古典概型的概率計(jì)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的表達(dá)式及最小正周期.
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)為偶函數(shù),且在(0,+∞)單調(diào)遞增,f(-1)=0,則滿(mǎn)足f(2x-1)<0的x的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.復(fù)數(shù)(1+2i)2(其中i為虛數(shù)單位)的虛部為( 。
A.4B.-4C.4iD.-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知A=$\frac{π}{4}$,a=$\sqrt{2}$且bsin($\frac{π}{4}$+C)-csin($\frac{π}{4}$+B)=a,則△ABC的面積為(  )
A.$\frac{1}{8}$B.$\frac{\sqrt{2}}{8}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),$\overrightarrow{c}$=(-2,3),若(λ$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{c}$,則λ=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.有下列三個(gè)說(shuō)法:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“p∨q為真”是“¬p為假”的必要不充分條件;
③在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)據(jù),則事件“sinx≥$\frac{1}{2}$”發(fā)生的概率為$\frac{5}{6}$.
其中正確說(shuō)法的個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知{an}為等差數(shù)列,公差為1,且a5是a3與a11的等比中項(xiàng),Sn是{an}的前n項(xiàng)和,則S12的值為54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知等差數(shù)列{an}的前三項(xiàng)為a-1,4,2a,記前n項(xiàng)和為Sn
(1)若Sk=30,求a和k的值;
(2)設(shè)bn=$\frac{Sn}{n}$,求b3+b7+b11+…+b4n-1的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案