【題目】設集合A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},已知BA.
(1)求實數(shù)m的取值范圍;
(2)當x∈N時,求集合A的子集的個數(shù).

【答案】
(1)①當m-1>2m+1,即m<-2時,B=,符合題意;
②當m-1≤2m+1,即m≥-2時,B≠.由BA,借助數(shù)軸,如圖所示,

解得0≤m≤ .所以0≤m≤ .
綜合①②可知,實數(shù)m的取值范圍為 .
(2)∵當x∈N時,A={0,1,2,3,4,5,6},∴集合A的子集的個數(shù)為27=128.
【解析】(1)對于不等式表示的集合,通過數(shù)軸表示后,由包含關系得到參數(shù)的取值范圍.
(2)當x∈N時,求出集合A的具體元素,有7個,再結合子集個數(shù)公式求子集的個數(shù).
【考點精析】本題主要考查了子集與真子集的相關知識點,需要掌握任何一個集合是它本身的子集;n個元素的子集有2n個,n個元素的真子集有2n -1個,n個元素的非空真子集有2n-2個才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱柱ABC-A1B1C1中,側棱AA1⊥底面ABC,AB=AC=1,AA1=2,∠B1A1C1=90°,D為BB1的中點.

求證:AD⊥平面A1DC1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A= ,B= ,從A到B的對應關系f不是映射的是( )
A.f:x→y=
B.f:x→y=
C.f:x→y=
D.f:x→y=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0且a≠1)的圖象上關于y軸對稱的點至少有3對,則實數(shù)a的范圍是(
A.(0,
B.( ,1)
C.( ,1)
D.(0,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著“全面二孩”政策推行,我市將迎來生育高峰.今年新春伊始,宜城各醫(yī)院產(chǎn)科就已經(jīng)是一片忙碌,至今熱度不減.衛(wèi)生部門進行調查統(tǒng)計,期間發(fā)現(xiàn)各醫(yī)院的新生兒中,不少都是“二孩”;在市第一醫(yī)院,共有40個猴寶寶降生,其中20個是“二孩”寶寶;市婦幼保健院共有30個猴寶寶降生,其中10個是“二孩”寶寶. (I)從兩個醫(yī)院當前出生的所有寶寶中按分層抽樣方法抽取7個寶寶做健康咨詢.
①在市第一醫(yī)院出生的一孩寶寶中抽取多少個?
②若從7個寶寶中抽取兩個寶寶進行體檢,求這兩個寶寶恰出生不同醫(yī)院且均屬“二孩”的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有85%的把握認為一孩或二孩寶寶的出生與醫(yī)院有關?
附:

P(k2>k0

0.4

0.25

0.15

0.10

k0

0.708

1.323

2.072

2.706

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: =1的離心率為 ,點F1 , F2是橢圓E的左、右焦點,過F1的直線與橢圓E交于A,B兩點,且△F2AB的周長為8.
(1)求橢圓E的標準方程;
(2)動點M在橢圓E上,動點N在直線l:y=2 上,若OM⊥ON,探究原點O到直線MN的距離是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】性格色彩學創(chuàng)始人樂嘉是江蘇電視臺當紅節(jié)目“非誠勿擾”的特約嘉賓,他的點評視角獨特,語言犀利,給觀眾留下了深刻的印象,某報社為了了解觀眾對樂嘉的喜愛程度,隨機調查了觀看了該節(jié)目的140名觀眾,得到如下的列聯(lián)表:(單位:名)

總計

喜愛

40

60

100

不喜愛

20

20

40

總計

60

80

140

(Ⅰ)從這60名男觀眾中按對樂嘉是否喜愛采取分層抽樣,抽取一個容量為6的樣本,問樣本中喜愛與不喜愛的觀眾各有多少名?
(Ⅱ)根據(jù)以上列聯(lián)表,問能否在犯錯誤的概率不超過0.025%的前提下認為觀眾性別與喜愛樂嘉有關.(精確到0.001)
(Ⅲ)從(Ⅰ)中的6名男性觀眾中隨機選取兩名作跟蹤調查,求選到的兩名觀眾都喜愛樂嘉的概率.
附:

p(k2≥k0

0.10

0.05

0.025

0.010

0.005

k0

2.705

3.841

5.024

6.635

7.879

k2=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: 的右焦點為F(1,0),點P是橢圓C上一動點,若動點P到點的距離的最大值為b2
(1)求橢圓C的方程,并寫出其參數(shù)方程;
(2)求動點P到直線l:x+2y﹣9=0的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2a的正方形ABCD,E,F分別為AB,BC的中點,沿圖中虛線將3個三角形折起,使點A,BC重合,重合后記為點P.

(1)折起后形成的幾何體是什么幾何體?

(2)這個幾何體共有幾個面,每個面的三角形有何特點

(3)每個面的三角形面積為多少?

查看答案和解析>>

同步練習冊答案