【題目】已知拋物線(xiàn)的焦點(diǎn)到準(zhǔn)線(xiàn)距離為.

(1)若點(diǎn),且點(diǎn)在拋物線(xiàn)上,求的最小值;

(2)若過(guò)點(diǎn)的直線(xiàn)與圓相切,且與拋物線(xiàn)有兩個(gè)不同交點(diǎn),求的面積.

【答案】(1)2(2)

【解析】

1)由拋物線(xiàn)圖像的幾何特征可知,設(shè)點(diǎn)到拋物線(xiàn)準(zhǔn)線(xiàn)的距離分別為,因?yàn)辄c(diǎn)在拋物線(xiàn)上,所以到準(zhǔn)線(xiàn)距離與到焦點(diǎn)距離相等,故僅當(dāng)垂直于準(zhǔn)線(xiàn)時(shí)有最小值.

2)應(yīng)用設(shè)而不求法,設(shè)直線(xiàn)的方程為:,將聯(lián)立,結(jié)合韋達(dá)定理與弦長(zhǎng)公式以及點(diǎn)到直線(xiàn)的距離公式求出三角形面積.

解:(1)根據(jù)題意可知

所以?huà)佄锞(xiàn)方程為

則拋物線(xiàn)焦點(diǎn)為,準(zhǔn)線(xiàn)為;

記點(diǎn)到拋物線(xiàn)準(zhǔn)線(xiàn)的距離分別為

,等號(hào)成立當(dāng)且僅當(dāng)PE垂直于準(zhǔn)線(xiàn),

的最小值為

(2)設(shè) ,

由題意知,直線(xiàn)斜率存在,設(shè)直線(xiàn)的方程為:

聯(lián)立得,

由韋達(dá)定理得

到直線(xiàn)的距離為得:,

點(diǎn)到直線(xiàn)的距離為

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,,點(diǎn)的中點(diǎn).

(1)證明:直線(xiàn)平面;

(2)求異面直線(xiàn)所成角的余弦值;

(3)求平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)P是橢圓上一點(diǎn),MN分別是兩圓(x+4)2y2=1(x-4)2y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )

A. 9,12 B. 8,11 C. 10,12 D. 8,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C經(jīng)過(guò)M(1,3)N(4,2),P(1,﹣7)三點(diǎn),且直線(xiàn)lxay10(aR)是圓C的一條對(duì)稱(chēng)軸,過(guò)點(diǎn)A(6,a) 作圓C的一條切線(xiàn),切點(diǎn)為B,則線(xiàn)段AB的長(zhǎng)度為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣bx+lnx,(a,b∈R).

(1)若a=1,b=3,求函數(shù)f(x)的單調(diào)增區(qū)間;

(2)若b=0時(shí),不等式f(x)≤0在[1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;

(3)當(dāng)a=1,b>時(shí),記函數(shù)f(x)的導(dǎo)函數(shù)f(x)的兩個(gè)零點(diǎn)是x1和x2(x1<x2),求證:f(x1)﹣f(x2)>﹣3ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)和點(diǎn),直線(xiàn),的斜率乘積為常數(shù),設(shè)點(diǎn)的軌跡為,下列說(shuō)法正確的是(

A.存在非零常數(shù),使上所有點(diǎn)到兩點(diǎn),距離之和為定值

B.存在非零常數(shù),使上所有點(diǎn)到兩點(diǎn),距離之和為定值

C.不存在非零常數(shù),使上所有點(diǎn)到兩點(diǎn),距離之差的絕對(duì)值為定值

D.不存在非零常數(shù),使上所有點(diǎn)到兩點(diǎn),距離之差的絕對(duì)值為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋擲紅、藍(lán)兩顆骰子,當(dāng)已知紅色骰子的點(diǎn)數(shù)為偶數(shù)時(shí),兩顆骰子的點(diǎn)數(shù)之和不小于9的概率是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究高中學(xué)生對(duì)鄉(xiāng)村音樂(lè)的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=8.01,附表如下:

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

參照附表,得到的正確的結(jié)論是(  )

A. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別有關(guān)”

B. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別無(wú)關(guān)”

C. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】教材曾有介紹:圓上的點(diǎn)處的切線(xiàn)方程為我們將其結(jié)論推廣:橢圓的點(diǎn)處的切線(xiàn)方程為在解本題時(shí)可以直接應(yīng)用,已知直線(xiàn)與橢圓E有且只有一個(gè)公共點(diǎn).

1)求的值;

2)設(shè)O為坐標(biāo)原點(diǎn),過(guò)橢圓E上的兩點(diǎn)A、B分別作該橢圓的兩條切線(xiàn),且交于點(diǎn)M

①設(shè),直線(xiàn)AB、OM的斜率分別為,求證:為定值;

②設(shè),求OAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案