【題目】在平面直角坐標(biāo)系xOy中,圓C經(jīng)過M(1,3),N(4,2),P(1,﹣7)三點(diǎn),且直線l:x+ay﹣1=0(aR)是圓C的一條對(duì)稱軸,過點(diǎn)A(﹣6,a) 作圓C的一條切線,切點(diǎn)為B,則線段AB的長度為_______.
【答案】
【解析】
求出圓的標(biāo)準(zhǔn)方程可得圓心和半徑,由題意得直線l:x+ay﹣1=0經(jīng)過圓心,求得a的值,可得點(diǎn)A的坐標(biāo),再利用直線和圓相切的性質(zhì)求得線段AB的長度.
設(shè)圓C方程為:,圓C經(jīng)過M(1,3),N(4,2),P(1,﹣7)三點(diǎn),
所以,有,解得:
所以,圓C方程為:,
即圓C方程為:,圓心為C(1,-2),R=5,
因?yàn)橹本l:x+ay﹣1=0(aR)是圓C的一條對(duì)稱軸,所以直線l:x+ay﹣1=0經(jīng)過圓心,
得,解得:=0,所以點(diǎn)A(-6,0),|AC|=,
切線長|AB|=.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( 。
A. 回答該問卷的總?cè)藬?shù)不可能是100個(gè)
B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)·g(x)+f(x)·g′(x)>0,且f(-3)·g(-3)=0,則不等式f(x)·g(x)<0的解集是( )
A. (-3,0)∪(3,+∞)
B. (-3,0)∪ (0,3)
C. (-∞,-3)∪(3,+∞)
D. (-∞,-3)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,于點(diǎn),將沿折起,使,連接,得到如圖所示的幾何體.
(1)求證:平面平面;
(2)若點(diǎn)在線段上,直線與平面所成角的正切值為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為解決城市的擁堵問題,某城市準(zhǔn)備對(duì)現(xiàn)有的一條穿城公路MON進(jìn)行分流,已知穿城公路MON自西向東到達(dá)城市中心后轉(zhuǎn)向方向,已知∠MON=,現(xiàn)準(zhǔn)備修建一條城市高架道路L,L在MO上設(shè)一出入口A,在ON上設(shè)一出口B,假設(shè)高架道路L在AB部分為直線段,且要求市中心與AB的距離為10km.
(1)求兩站點(diǎn)A,B之間的距離;
(2)公路MO段上距離市中心30km處有一古建筑群C,為保護(hù)古建筑群,設(shè)立一個(gè)以C為圓心,5km為半徑的圓形保護(hù)區(qū).因考慮未來道路AB的擴(kuò)建,則如何在古建筑群和市中心之間設(shè)計(jì)出入口A,才能使高架道路及其延伸段不經(jīng)過保護(hù)區(qū)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線距離為.
(1)若點(diǎn),且點(diǎn)在拋物線上,求的最小值;
(2)若過點(diǎn)的直線與圓相切,且與拋物線有兩個(gè)不同交點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A,B,C所對(duì)的邊分別為a,b,c且ccosA=4,asinC=5.
(1)求邊長c;
(2)著△ABC的面積S=20.求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)F為拋物線C:()的焦點(diǎn),過點(diǎn)F的動(dòng)直線l與拋物線C交于M,N兩點(diǎn),且當(dāng)直線l的傾斜角為45°時(shí),.
(1)求拋物線C的方程.
(2)試確定在x軸上是否存在點(diǎn)P,使得直線PM,PN關(guān)于x軸對(duì)稱?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com