13.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知b+c=2acosB.
(Ⅰ)證明:A=2B;
(Ⅱ)若△ABC的面積S=$\frac{a^2}{4}$,求角A的大。

分析 (Ⅰ)利用正弦定理,結(jié)合和角的正弦公式,即可證明A=2B
(Ⅱ)若△ABC的面積S=$\frac{a^2}{4}$,則$\frac{1}{2}$bcsinA=$\frac{a^2}{4}$,結(jié)合正弦定理、二倍角公式,即可求角A的大小.

解答 (Ⅰ)證明:∵b+c=2acosB,
∴sinB+sinC=2sinAcosB,
∴sinB+sin(A+B)=2sinAcosB
∴sinB+sinAcosB+cosAsinB=2sinAcosB
∴sinB=sinAcosB-cosAsinB=sin(A-B)
∵A,B是三角形中的角,
∴B=A-B,
∴A=2B;
(Ⅱ)解:∵△ABC的面積S=$\frac{a^2}{4}$,
∴$\frac{1}{2}$bcsinA=$\frac{a^2}{4}$,
∴2bcsinA=a2
∴2sinBsinC=sinA=sin2B,
∴sinC=cosB,
∴B+C=90°,或C=B+90°,
∴A=90°或A=45°.

點(diǎn)評(píng) 本題考查了正弦定理,解三角形,考查三角形面積的計(jì)算,考查二倍角公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.執(zhí)行如圖的程序框圖,若輸入n的值為3,則輸出的S的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知某煉鋼廠車間每年的利潤(rùn)y(萬元)與廢品率x(%)的一組統(tǒng)計(jì)資料如下:
 廢品率x1.3  1.5 1.6 1.7 1.9
 利潤(rùn)y 150 120 110 100 70
求y關(guān)于x的一元線性回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦點(diǎn)為F,右頂點(diǎn)為A,已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O為原點(diǎn),e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)A的直線l與橢圓交于B(B不在x軸上),垂直于l的直線與l交于點(diǎn)M,與y軸交于點(diǎn)H,若BF⊥HF,且∠MOA=∠MAO,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且8sin2$\frac{A+B}{2}$-2cos2C=7.
(1)求tanC的值;
(2)若c=$\sqrt{3}$,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求函數(shù)y=cos(2x+$\frac{π}{4}$)的對(duì)稱中心,對(duì)稱軸方程,遞減區(qū)間和最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax2+2x-1(a<0).
(1)若a=-1,求函數(shù)的零點(diǎn);
(2)若函數(shù)在區(qū)間(0,1]上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.?dāng)?shù)列{an}是遞增的等差數(shù)列,已知a9=5,且a1,a3,a7成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{n{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)為偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=$\frac{1}{x}$B.y=-x2+1C.y=lg|x|D.y=3x

查看答案和解析>>

同步練習(xí)冊(cè)答案