15.若復(fù)數(shù)z=l+2i,則|$\overline{z}$+3i|=$\sqrt{2}$.

分析 直接利用復(fù)數(shù)的模的求法,化簡(jiǎn)求解即可.

解答 解:復(fù)數(shù)z=l+2i,則|$\overline{z}$+3i|=|1+i|=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的模的求法,復(fù)數(shù)的基本概念,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=$\left\{\begin{array}{l}{-x+4,x≤3}\\{lo{g}_{a}x,x>3}\end{array}\right.$ (a>0且a≠1),函數(shù)g(x)=f(x)-k.
①若a=$\frac{1}{3}$,函數(shù)g(x)無(wú)零點(diǎn),則實(shí)數(shù)k的取值范圍為[-1,1);
②若f(x)有最小值,則實(shí)數(shù)a的取值范圍是(1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系中,A(-2,0),B(2,0),P(x,y)滿足$\overrightarrow{P{A}^{2}}$$+\overrightarrow{P{B}^{2}}$=16,設(shè)點(diǎn)P的軌跡為C1,從C1上一點(diǎn)Q向圓C2:x2+y2=r2(r>0)作兩條切線,切點(diǎn)分別為M,N且∠MQN=60°
(1)求點(diǎn)P的軌跡方程r
(2)當(dāng)點(diǎn)Q在第一象限時(shí),連接切點(diǎn)M,N,分別交x,y軸于點(diǎn)C,D,求△OCD面積最小時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列四個(gè)推理中,屬于類(lèi)比推理的是( 。
A.因?yàn)殂~、鐵、鋁、金、銀等金屬能導(dǎo)電,所有一切金屬都能導(dǎo)電
B.一切奇數(shù)都不能被2整除,(250+1)是奇數(shù),所以(250+1)不能被2整除
C.在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{1+{a}_{n}}$可以計(jì)算出a2=$\frac{1}{2}$,a3=$\frac{1}{3}$,a4=$\frac{1}{4}$,所以推理出an=$\frac{1}{n}$
D.若雙曲線的焦距是實(shí)軸長(zhǎng)的2倍,則此雙曲線的離心率為2,類(lèi)似的,若橢圓的焦距是長(zhǎng)軸長(zhǎng)的一半,則此橢圓的離心率為$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知點(diǎn)A(1,a),圓x2+y2=4.
(1)若過(guò)點(diǎn)A的圓的切線只有一條,求a的值及切線方程;
(2)若過(guò)點(diǎn)A且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長(zhǎng)為2$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.4sin15°sin165°-2等于( 。
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某中學(xué)高三從甲、乙兩個(gè)班中各選出7名同學(xué)參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖,其中甲班學(xué)生成績(jī)的眾數(shù)是85,乙班學(xué)生成績(jī)的中位數(shù)是83,則x+y的值為( 。
A.7B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將函數(shù)f(x)=sin($\frac{1}{5}$x+$\frac{13}{6}$π)的圖象向右平移$\frac{10}{3}$π個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則下列結(jié)論錯(cuò)誤的是(  )
A.函數(shù)g(x)的最小正周期為10πB.函數(shù)g(x)是偶函數(shù)
C.函數(shù)g(x)的圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱D.函數(shù)g(x)在[π,2π]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,AH⊥BC于H,點(diǎn)H滿足$\overrightarrow{BH}$=2$\overrightarrow{HC}$,若|$\overrightarrow{BC}$|=3,則$\overrightarrow{BH}$•$\overrightarrow{BA}$=( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案