6.在2015年全國青運會火炬?zhèn)鬟f活動中,有編號為1,2,3,4,5的5名火炬手,若從中任選2人,則選出的火炬手的編號不相連的概率為(  )
A.$\frac{3}{10}$B.$\frac{3}{5}$C.$\frac{7}{10}$D.$\frac{2}{5}$

分析 先求出基本事件總數(shù),再求出選出的火炬手的編號不相連包含的基本事件個數(shù),由此能求出選出的火炬手的編號不相連的概率.

解答 解:有編號為1,2,3,4,5的5名火炬手,若從中任選2人,有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共有10種,其中選出的火炬手的編號不相連的有(1,3),(1,4),(1,5),(2,4),(2,5),(3,5),共有6種,
故選出的火炬手的編號不相連的概率$\frac{6}{10}$=$\frac{3}{5}$

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意等可能事件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知等差數(shù)列{an},則“a1<a3”是“an<an+1”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知全集U=R,集合A={x|x<-1},B={x|x≥0},則集合∁U(A∪B)=(  )
A.[-1,+∞)B.(-∞,0)C.(-1,0]D.[-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i,則z2-$\frac{1}{z}$等于( 。
A.1B.-1+$\sqrt{3}$iC.-1D.$\sqrt{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知x,y滿足$\left\{\begin{array}{l}{3x+y-6≥0}\\{x+y-4≤0}\\{x-y-2≤0}\end{array}\right.$,則z=2x-y的最小值-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)p:實數(shù)x滿足(x-a)2<4,q:實數(shù)x滿足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+2x-8>0}\\{\;}\end{array}\right.$,若p是q的必要不充分條件,則實數(shù)a的取值范圍是(1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.方程log22x-log2(4x2)+a=0有兩個不等的實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)x+y+z=19,則函數(shù)u=$\sqrt{{x}^{2}+4}$+$\sqrt{{y}^{2}+9}$+$\sqrt{{z}^{2}+16}$的最小值為$\sqrt{442}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知m是n的充分條件,m是s的充要條件,則n是s的什么條件?

查看答案和解析>>

同步練習(xí)冊答案