【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng) 時(shí),函數(shù) 的圖象與軸交于兩點(diǎn) ,且 ,又是的導(dǎo)函數(shù).若正常數(shù) 滿(mǎn)足條件.證明:.
【答案】(1)-1;(2);(3)參考解析
【解析】
試題(1),可知在[,1]是增函數(shù),在[1,2]是減函數(shù),所以最大值為f(1).(2)在區(qū)間上為單調(diào)遞增函數(shù),即在上恒成立。,利用分離參數(shù)在上恒成立,即求的最大值。
(3)有兩個(gè)實(shí)根, ,兩式相減,又,
.要證:,只需證:,令可證。
試題解析:(1)
函數(shù)在[,1]是增函數(shù),在[1,2]是減函數(shù),
所以.
(2)因?yàn)?/span>,所以,
因?yàn)?/span>在區(qū)間單調(diào)遞增函數(shù),所以在(0,3)恒成立
,有=,()
綜上:
(3)∵,又有兩個(gè)實(shí)根,
∴,兩式相減,得,
∴,
于是
.
要證:,只需證:
只需證:.(*)
令,∴(*)化為 ,只證即可.
在(0,1)上單調(diào)遞增,,
即.∴.
(其他解法根據(jù)情況酌情給分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,N是PC的中點(diǎn).
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為矩形,⊥平面,為的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)設(shè)二面角為60°,=1,=,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某單位甲、乙、丙三個(gè)部門(mén)共有員工60人,為調(diào)查他們的睡眠情況,通過(guò)分層抽樣獲得部分員工每天睡眼的時(shí)間,數(shù)據(jù)如下表(單位:小時(shí))
甲部門(mén) | 6 | 7 | 8 | |||
乙部門(mén) | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部門(mén) | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求該單位乙部門(mén)的員工人數(shù)?
(2)若將每天睡眠時(shí)間不少于7小時(shí)視為睡眠充足,現(xiàn)從該單位任取1人,估計(jì)拍到的此人為睡眠充足者的概率;
(3)再?gòu)募撞块T(mén)和乙部門(mén)抽出的員工中,各隨機(jī)選取一人,甲部門(mén)選出的員工記為A,乙部門(mén)選出的員工記為B,假設(shè)所有員工睡眠的時(shí)間相互獨(dú)立,求A的睡眠時(shí)間不少于B的睡眼時(shí)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,,.
(1)命題p:“,都有”,若命題p為真命題,求a的值;
(2)若“”是“”的必要條件,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①函數(shù)的圖象和直線的公共點(diǎn)個(gè)數(shù)是,則的值可能是;
②若函數(shù)定義域?yàn)?/span>且滿(mǎn)足,則它的圖象關(guān)于軸對(duì)稱(chēng);
③函數(shù)的值域?yàn)?/span>;
④若函數(shù)在上有零點(diǎn),則實(shí)數(shù)的取值范圍是.
其中正確的序號(hào)是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】美國(guó)一貫推行強(qiáng)權(quán)政治,2018年3月22日,美國(guó)總統(tǒng)特朗普在白宮簽署了對(duì)中國(guó)輸美產(chǎn)品征收關(guān)稅的總統(tǒng)備忘錄,限制中國(guó)商品進(jìn)入美國(guó)市場(chǎng)。中國(guó)某企業(yè)計(jì)劃打入美國(guó)市場(chǎng),決定從A、B兩種產(chǎn)品中只選一種進(jìn)行投資生產(chǎn),已知投入生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)元)
年固定成本 | 每件產(chǎn)品成本 | 每件產(chǎn)品銷(xiāo)售價(jià) | 每年最多可生產(chǎn)件數(shù) | |
A產(chǎn)品 | 40 | m | 15 | 200 |
B產(chǎn)品 | 60 | 10 | 22 | 150 |
其中固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),m是待定的常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料決定,預(yù)計(jì),另外,年銷(xiāo)售件B產(chǎn)品時(shí)需交0.05萬(wàn)元的附件關(guān)稅,假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷(xiāo)售出去.
(1)求該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤(rùn)與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并求出其定義域;
(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)?jiān)O(shè)計(jì)出投資方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】針對(duì)國(guó)家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個(gè)人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個(gè)總體,從這人中任意選取人,求至少有一人年齡在歲以下的概率.
(3)在接受調(diào)查的人中,有人給這項(xiàng)活動(dòng)打出的分?jǐn)?shù)如下: , , , , , , , , , ,把這個(gè)人打出的分?jǐn)?shù)看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】獨(dú)立性檢驗(yàn)中,假設(shè):運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)沒(méi)有關(guān)系.在上述假設(shè)成立的情況下,計(jì)算得的觀測(cè)值.下列結(jié)論正確的是
A. 在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)有關(guān)
B. 在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)無(wú)關(guān)
C. 在犯錯(cuò)誤的概率不超過(guò)0.005的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)有關(guān)
D. 在犯錯(cuò)誤的概率不超過(guò)0.005的前提下,認(rèn)為運(yùn)動(dòng)員受傷與不做熱身運(yùn)動(dòng)無(wú)關(guān)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com