【題目】如圖,四棱錐中,底面為矩形,⊥平面,為的中點(diǎn).
(Ⅰ)證明:∥平面;
(Ⅱ)設(shè)二面角為60°,=1,=,求三棱錐的體積.
【答案】(1)證明見(jiàn)解析;(2).
【解析】
試題(1)證明線面平行,根據(jù)判定定理就是要證線線平行,而平行線的尋找,又是根據(jù)線面平行的性質(zhì)定理找到,設(shè)與交點(diǎn)為,過(guò)的平面與平面的交線就是,這就是要找的平行線,由中位線定理易證;(2)要求三棱錐的體積,關(guān)鍵是求得底面三角形的面積(高為到底面的距離,即為的一半),已知條件是二面角大小為,為此可以為軸建立空間直角坐標(biāo)系,設(shè) ,寫(xiě)出各點(diǎn)坐標(biāo),求得平面和平面的法向量,由法向量的夾角與二面角相等或互補(bǔ)可求得,從而可求得底面積,體積.
試題解析:(1)證明:連,設(shè),連,
∵是的中點(diǎn),∴,
∵平面,平面,
∴平面;
(2)建立如圖所示的空間直角坐標(biāo)系,則
.
設(shè) .則.
設(shè)為平面的法向量,則
取.
又為平面的一個(gè)法向量,
∴,∴.
因?yàn)?/span>為的中點(diǎn),所以三棱錐的高為,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),記為的導(dǎo)函數(shù).
(1)若的極大值為,求實(shí)數(shù)的值;
(2)若函數(shù),求在上取到最大值時(shí)的值;
(3)若關(guān)于的不等式在上有解,求滿足條件的正整數(shù)的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京、張家口2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估,該商品原來(lái)每件售價(jià)為25元,年銷(xiāo)售8萬(wàn)件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷(xiāo)售量將相應(yīng)減少2000件,要使銷(xiāo)售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷(xiāo)售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷(xiāo)策略改革,并提高定價(jià)到元.公司擬投入萬(wàn)作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品改革后的銷(xiāo)售量至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使改革后的銷(xiāo)售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),直線:,為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為,且滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過(guò)點(diǎn)作直線與軌跡交于,兩點(diǎn),為直線上一點(diǎn),且滿足,若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形,,,為等邊三角形,,是的中點(diǎn).
(1)證明:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年2月22日,在韓國(guó)平昌冬奧會(huì)短道速滑男子500米比賽中,中國(guó)選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國(guó)代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造中國(guó)男子冰上競(jìng)速項(xiàng)目在冬奧會(huì)金牌零的突破.根據(jù)短道速滑男子500米的比賽規(guī)則,運(yùn)動(dòng)員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要經(jīng)過(guò)4個(gè)直道與彎道的交接口.已知某男子速滑運(yùn)動(dòng)員順利通過(guò)每個(gè)交接口的概率均為,摔倒的概率均為.假定運(yùn)動(dòng)員只有在摔倒或達(dá)到終點(diǎn)時(shí)才停止滑行,現(xiàn)在用表示該運(yùn)動(dòng)員在滑行最后一圈時(shí)在這一圈后已經(jīng)順利通過(guò)的交接口數(shù).
(1)求該運(yùn)動(dòng)員停止滑行時(shí)恰好已順利通過(guò)3個(gè)交接口的概率;
(2)求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為實(shí)數(shù).
(1)若函數(shù)為定義域上的單調(diào)函數(shù),求的取值范圍.
(2)若,滿足不等式成立的正整數(shù)解有且僅有一個(gè),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)镈的函數(shù)y=f(x),如果存在區(qū)間[m,n]D,同時(shí)滿足:
①f(x)在[m,n]內(nèi)是單調(diào)函數(shù);
②當(dāng)定義域是[m,n]時(shí),f(x)的值域也是[m,n].則稱[m,n]是該函數(shù)的“和諧區(qū)間”.
(1)證明:[0,1]是函數(shù)y=f(x)=x2的一個(gè)“和諧區(qū)間”.
(2)求證:函數(shù)不存在“和諧區(qū)間”.
(3)已知:函數(shù)(a∈R,a≠0)有“和諧區(qū)間”[m,n],當(dāng)a變化時(shí),求出n﹣m的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com