【題目】下列說(shuō)法:
①函數(shù)的圖象和直線的公共點(diǎn)個(gè)數(shù)是,則的值可能是;
②若函數(shù)定義域?yàn)?/span>且滿(mǎn)足,則它的圖象關(guān)于軸對(duì)稱(chēng);
③函數(shù)的值域?yàn)?/span>;
④若函數(shù)在上有零點(diǎn),則實(shí)數(shù)的取值范圍是.
其中正確的序號(hào)是_________.
【答案】①③④
【解析】
①:畫(huà)出函數(shù)圖像即可得出答案.
②:的函數(shù)關(guān)于軸對(duì)稱(chēng).
③:討論的正負(fù)號(hào),利用函數(shù)的單調(diào)性分別求出函數(shù)的值域.再求并集即可.
④:討論二次函數(shù)的對(duì)稱(chēng)軸的位置,再利用函數(shù)的零點(diǎn)分布性質(zhì)列出不等式,解出即可.
①畫(huà)出函數(shù)的圖象,如圖所示:
則的值可能是.正確.
②若函數(shù)定義域?yàn)?/span>且滿(mǎn)足,則它的圖象關(guān)于對(duì)稱(chēng),錯(cuò)誤.
③函數(shù),
當(dāng)時(shí),在單調(diào)遞增,所以
當(dāng)時(shí),在單調(diào)遞增,
所以函數(shù)的值域?yàn)?/span>.
④當(dāng)時(shí)函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
函數(shù)在上有零點(diǎn)等價(jià)于: 或
即.
所以.
當(dāng)時(shí)函數(shù)在上單調(diào)遞減。
函數(shù)在上有零點(diǎn)等價(jià)于:無(wú)解.
綜上所述:.正確.
故填:①③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[-4,4]上的奇函數(shù),當(dāng)x∈(0,4]時(shí),函數(shù)的解析式為 (a∈R), 且.
(1)試求a的值;
(2)求f(x)在[-4,4]上的解析式;
(3)求f(x)在[-4,0)上的最值(最大值和最小值).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有三個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形的兩個(gè)頂點(diǎn)M,N及的中點(diǎn)S處,,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與M,N等距離的一點(diǎn)O處設(shè)一個(gè)宣講站,記O點(diǎn)到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和為.
(1)設(shè),試將L表示為x的函數(shù)并寫(xiě)出其定義域;
(2)試?yán)茫?/span>1)的函數(shù)關(guān)系式確定宣講站O的位置,使宣講站O到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn),線段的垂直平分線交軸于點(diǎn),若,則點(diǎn)的橫坐標(biāo)為( )
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最大值;
(2)令,若在區(qū)間上為單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng) 時(shí),函數(shù) 的圖象與軸交于兩點(diǎn) ,且 ,又是的導(dǎo)函數(shù).若正常數(shù) 滿(mǎn)足條件.證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,,令.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間及極值;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量a=(cosωx-sinωx,sinωx),b=(-cosωx-sinωx,2cosωx).設(shè)函數(shù)f(x)=a·b+λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱(chēng),其中ω,λ為常數(shù),且ω∈.
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過(guò)點(diǎn),求函數(shù)f(x)在區(qū)間上的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}滿(mǎn)足an+1+an=9·2n-1,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若不等式Sn>kan-2對(duì)一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來(lái)的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為.
(Ⅰ)求曲線的參數(shù)方程;
(Ⅱ)過(guò)原點(diǎn)且關(guān)于軸對(duì)稱(chēng)的兩條直線與分別交曲線于、和、,且點(diǎn)在第一象限,當(dāng)四邊形的周長(zhǎng)最大時(shí),求直線的普通方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com