1.設(shè)集合A={2,3,4,8,9,16},若a∈A,b∈A,則事件“l(fā)ogab不為整數(shù)但$\frac{a}$為整數(shù)”發(fā)生的概率為$\frac{1}{18}$.

分析 滿足條件的(a,b)的基本事件個數(shù)n=6×6=36,再利用列舉法求出事件“l(fā)ogab不為整數(shù)但$\frac{a}$為整數(shù)”包含的基本事件的個數(shù),由此能求出事件“l(fā)ogab不為整數(shù)但$\frac{a}$為整數(shù)”的概率.

解答 解:∵集合A={2,3,4,8,9,16},若a∈A,b∈A,
∴滿足條件的(a,b)的基本事件個數(shù)n=6×6=36,
事件“l(fā)ogab不為整數(shù)但$\frac{a}$為整數(shù)”包含的基本事件有:(4,8),(8,16),
∴事件“l(fā)ogab不為整數(shù)但$\frac{a}$為整數(shù)”的概率p=$\frac{2}{36}=\frac{1}{18}$.
故答案為:$\frac{1}{18}$.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意列舉法的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知cosα=$\frac{4}{5}$且α∈$(-\frac{π}{2},0)$,則sin2α的值為-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.計算:(1)0.2-20+($\frac{1}{27}$${\;}^{-\frac{1}{3}}$);
(2)log3.19.61+lg$\frac{1}{1000}$+ln(e2•$\root{3}{e}$)+log3(log327)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.在空間直角坐標系中,若A(0,2,5),B(-1,3,3),則|AB|=(  )
A.$\sqrt{10}$B.3C.$\sqrt{7}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若圓C:(x-5)2+(y+1)2=m(m>0)上有且只有一點到直線4x+3y-2=0的距離為1,則實數(shù)m的值為(  )
A.4B.16C.4或16D.2或4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知圓C經(jīng)過點A(0,2),B(2,0),圓C的圓心在圓x2+y2=2的內(nèi)部,且直線3x+4y+5=0被圓C所截得的弦長為$2\sqrt{3}$.點P為圓C上異于A,B的任意一點,直線PA與x軸交于點M,直線PB與y軸交于點N.
(1)求圓C的方程;
(2)求證:|AN|•|BM|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.計算:${3^{{{log}_3}4}}$-${27^{\frac{2}{3}}}$+lg0.01+(0.75)-1+ln$\frac{1}{e}$=-$\frac{20}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知橢圓的兩個焦點分別是點F1 (-1,0),F(xiàn)2 (1,0),P為橢圓上一點,且F1F2是PF1和PF2的等差中項,則該橢圓方程是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知$\overrightarrow a$=(2$\sqrt{3}$sinωx,2sinωx),$\overrightarrow b$=(cosωx,sinωx),0<ω<2,函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$+t(t為常數(shù))的一條對稱軸方程為x=$\frac{π}{3}$,且與y軸交于(0,-1).
(1)求f(x)解析式;
(2)若銳角α,β滿足f($\frac{α+β}{2}$+$\frac{π}{12}$)=$\frac{{5\sqrt{3}}}{7}$,f($\frac{α}{2}$+$\frac{π}{3}$)=$\frac{2}{7}$,求sinβ.

查看答案和解析>>

同步練習冊答案