11.若復(fù)數(shù)z滿足$\frac{(2+i)^{2}}{z}$=i,則z=4-3i.

分析 由$\frac{(2+i)^{2}}{z}$=i,得$z=\frac{(2+i)^{2}}{i}$,再利用復(fù)數(shù)代數(shù)形式的乘除運算化簡即可得答案.

解答 解:由$\frac{(2+i)^{2}}{z}$=i,
得z=$\frac{(2+i)^{2}}{i}=\frac{3+4i}{i}=\frac{-i(3+4i)}{-{i}^{2}}=4-3i$.
故答案為:4-3i.

點評 本題考查了復(fù)數(shù)代數(shù)形式的混合運算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.$y=\frac{1}{x}$B.y=lgxC.y=|x|-1D.$y={({\frac{1}{2}})^{lnx}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.?dāng)?shù)列{an}滿足a1=1,a2=$\frac{1}{2}$,{anan+1}是公比為$\frac{1}{2}$的等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=3a2n+2n-7,Sn是數(shù)列{bn}的前n項和,求Sn以及Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\frac{{{e^x}+{e^{-x}}+sinx}}{{{e^x}+{e^{-x}}}}$,其導(dǎo)函數(shù)記為f′(x),則f(2016)+f′(2016)+f(-2016)-f′(-2016)=(  )
A.2016B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖.在三棱柱ABC-A1B1C1中,已知側(cè)棱與底面垂直,∠CAB=90°,且AC=1,AB=2,E為BB1的中點,M為AC上一點,$\overrightarrow{AM}$=$\frac{2}{3}$$\overrightarrow{AC}$.
(I)證明:CB1∥平面A1EM;
(Ⅱ)若二面角C1-A1E-M的余弦值為$\frac{\sqrt{5}}{5}$,求AA1的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)函數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.已知函數(shù)f(x)=3x+4sinx-cosx的拐點是M(x0,f(x0)),則點M( 。
A.在直線y=-3x上B.在直線y=3x上C.在直線y=-4x上D.在直線y=4x上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2}$)的部分圖象如圖所示,則f(x)的遞增區(qū)間為( 。
A.$({-\frac{π}{12}+2kπ,\frac{5π}{12}+2kπ})$,k∈ZB.$({-\frac{π}{12}+kπ,\frac{5π}{12}+kπ})$,k∈Z
C.$({-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ})$,k∈ZD.$({-\frac{π}{6}+kπ,\frac{5π}{6}+kπ})$,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\frac{π}{2}<α<π$且$sin(α+\frac{π}{6})=\frac{3}{5}$,則$cos(α-\frac{π}{6})$等于( 。
A.$\frac{{-4-3\sqrt{3}}}{10}$B.$\frac{{4+3\sqrt{3}}}{10}$C.$\frac{{4-3\sqrt{3}}}{10}$D.$\frac{{3\sqrt{3}-4}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知O為坐標(biāo)原點,點A(1,0),點B(x,2).
(1)求|$\overrightarrow{AB}$|;
(2)設(shè)函數(shù)f(x)=|$\overrightarrow{AB}$|2+$\overrightarrow{OA}$•$\overrightarrow{OB}$,求函數(shù)f(x)的最小值及相應(yīng)的x的值.

查看答案和解析>>

同步練習(xí)冊答案