14.在正三棱錐S-ABC中,SA⊥SB,AB=$\sqrt{2}$,則正三棱誰S-ABC外接球的體積為(  )
A.B.2$\sqrt{3}$πC.$\sqrt{3}$πD.$\frac{\sqrt{3}}{2}$π

分析 根據(jù)題意,判斷三棱錐S-ABC的形狀,求出外接球的半徑,然后求解體積.

解答 解:正三棱錐S-ABC中,SA⊥SB,AB=$\sqrt{2}$,可得SC⊥SA,正三棱錐是正方體的一個角,設(shè)外接球的半徑為r,
可得(2r)2=12+12+12=3,r=$\frac{\sqrt{3}}{2}$.
正三棱誰S-ABC外接球的體積為:$\frac{4}{3}π{r}^{3}$=$\frac{\sqrt{3}π}{2}$.
故選:D.

點評 本題考查三棱錐S-ABC的外接球的體積,解題的關(guān)鍵是確定三棱錐S-ABC的外接球的半徑.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,若存在過右焦點F的直線與雙曲線C相交于A、B兩點,且$\overrightarrow{AF}$=3$\overrightarrow{BF}$,則雙曲線C的離心率的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2011年,國際數(shù)學(xué)協(xié)會正式宣布,將每年的3月14日設(shè)為國際數(shù)學(xué)節(jié),來源是中國古代數(shù)學(xué)家祖沖之的圓周率,為慶祝該節(jié)日,某校舉辦的數(shù)學(xué)嘉年華活動中,設(shè)計了如下有獎闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得5個學(xué)豆、10個學(xué)豆、20個學(xué)豆的獎勵,游戲還規(guī)定,當(dāng)選手闖過一關(guān)后,可以選擇帶走相應(yīng)的學(xué)豆,結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒有闖關(guān)成功,則全部學(xué)豆歸零,游戲結(jié)束.設(shè)選手甲第一關(guān)、第二關(guān)、第三關(guān)的概率分別為$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,選手選擇繼續(xù)闖關(guān)的概率均為$\frac{1}{2}$,且各關(guān)之間闖關(guān)成功與否互不影響
(I)求選手甲第一關(guān)闖關(guān)成功且所得學(xué)豆為零的概率
(Ⅱ)設(shè)該學(xué)生所得學(xué)豆總數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.甲、乙兩人進行“石頭、剪刀、布”游戲,開始時每人擁有3張卡片,每一次“出手”(雙方同時):若分出勝負,則負者給對方一張卡片,若不分勝負,則不動卡片,規(guī)定:當(dāng)一人擁有6張卡片或“出手”次數(shù)達到6次時游戲結(jié)束,設(shè)游戲結(jié)束“出手”次數(shù)為ξ,則Eξ等于 (  )
A.$\frac{50}{9}$B.$\frac{100}{27}$C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若二項式(ax-$\frac{1}{\sqrt{x}}$)6展開式中的常數(shù)項為120,則正實數(shù)a的值為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線x+y=a與圓O:x2+y2=8交于A,B兩點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則實數(shù)a的值為(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{2}$或-2$\sqrt{2}$D.4或-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)復(fù)數(shù)z滿足(1+i)z=2i,則復(fù)數(shù)z=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為e,直線l:y=ex+a與x,y軸分別交于A、B點.
(Ⅰ)求證:直線l與橢圓C有且僅有一個交點;
(Ⅱ)設(shè)T為直線l與橢圓C的交點,若AT=eAB,求橢圓C的離心率;
(Ⅲ)求證:直線l:y=ex+a上的點到橢圓C兩焦點距離和的最小值為2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|-2<x<3},B={y|y=|x|-3,x∈A},則A∩B等于( 。
A.{x|0<x<3}B.{x|-1<x<0}C.{x|-2<x<0}D.{x|-3<x<3}

查看答案和解析>>

同步練習(xí)冊答案