6.一個(gè)四棱錐的三視圖如圖所示(單位:cm),這個(gè)四棱錐的體積為72cm3

分析 由已知中的三視圖可得:該幾何體是一個(gè)以俯視圖為底面的四棱錐,代入棱錐體積公式,可得答案.

解答 解:由已知中的三視圖可得:該幾何體是一個(gè)以俯視圖為底面的四棱錐,
其底面面積S=6×6=36cm2
高h(yuǎn)=6cm,
故棱錐的體積V=$\frac{1}{3}Sh$=72cm3,
故答案為:72

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱柱的體積和表面積,棱錐的體積和表面積,簡(jiǎn)單幾何體的三視圖,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
(注:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$)
(1)求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)試預(yù)測(cè)加工10個(gè)零件需要多少小時(shí)?
(3)此回歸方程擬合效果如何?
零件個(gè)數(shù)x(個(gè))2345
加工時(shí)

]y(小時(shí))
2.5344.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-2y≥0}\\{y≥x-2}\\{y≥2-x}\end{array}\right.$,則z=2x+y的最大值為( 。
A.10B.8C.$\frac{10}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為ρ=2cosθ,θ∈[0,$\frac{π}{2}$].
(1)求C的參數(shù)方程;
(2)設(shè)點(diǎn)D在C上,C在D處的切線與直線l:y=$\sqrt{3}$x+2垂直,根據(jù)(1)中你得到的參數(shù)方程,確定D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x-\frac{3}{x},x>0}\\{{x}^{2}-\frac{1}{4},x≤0}\end{array}\right.$,則方程f(x)=2的所有實(shí)數(shù)根之和為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某三棱錐的三視圖如圖所示,則該三棱錐的體積為(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如果方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是( 。
A.(1,+∞)B.(1,2)C.($\frac{1}{2}$,1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}sin\frac{x}{4}π,x>0\\ f({x+2}),x≤0\end{array}$,則f(-5)的值為( 。
A.0B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.經(jīng)過點(diǎn)A(3,2),且與直線x-y+3=0平行的直線方程是( 。
A.x+y-1=0B.x-y-1=0C.x+y+1=0D.x-y+1=0

查看答案和解析>>

同步練習(xí)冊(cè)答案