【題目】已知p:關(guān)于x的不等式x2+2ax+4>0對(duì)一切 恒成立;q:函數(shù)f(x)=-(5-2a)x在R上是減函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)a的取值范圍( )。
A.
B.B、
C.C、
D.a≥-2

【答案】A
【解析】設(shè)g(x)=x2+2ax+4.因?yàn)殛P(guān)于x的不等式x2+2ax+4>0對(duì)一切x∈R恒成立,
所以函數(shù)g(x)的圖像開口向上且與x軸沒有交點(diǎn),
故Δ=4a2-16<0,所以-2<a<2,所以命題p:-2<a<2.
函數(shù)f(x)=-(5-2a)x是減函數(shù),則有5-2a>1,即a<2.所以命題q:a<2.
又由于p或q為真,p且q為假,可知p和q為一真一假.
①若p真q假,則 此不等式組無解.
②若p假q真,則 所以a≤-2.
綜上可知,所求實(shí)數(shù)a的取值范圍為a≤-2.故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+a+1.
(1)當(dāng)a=1時(shí),求函數(shù)在區(qū)間[﹣2,3]上的值域;
(2)函數(shù)f(x)在[﹣5,5]上單調(diào),求實(shí)數(shù)a的取值范圍;
(3)求函數(shù)f(x)在[0,2]上的最小值g(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校擬建一塊周長為400m的操場(chǎng)如圖所示,操場(chǎng)的兩頭是半圓形,中間區(qū)域是矩形,學(xué)生做操一般安排在矩形區(qū)域,為了能讓學(xué)生的做操區(qū)域盡可能大,試問如何設(shè)計(jì)矩形的長和寬?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD垂直于底面ABCD,AD=PD,E分別為AP的中點(diǎn).

(Ⅰ)求證:DE垂直于平面PAB;

(Ⅱ)設(shè)BC =AB=2,求直線EB與平面ABD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax+ (a∈R)g(x)=lnx.
(1)若對(duì)任意的實(shí)數(shù)a,函數(shù)f(x)與g(x)的圖象在x=x0處的切線斜率總相等,求x0的值;
(2)若a>0,對(duì)任意x>0,不等式f(x)﹣g(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2)有如下結(jié)論
1)f(x1+x2)=f(x1)f(x2
2)f(x1x2)=f(x1)+f(x2
3) >0
4)f( )<
5)f( )>
6)f(﹣x)=f(x).
當(dāng)f(x)=lgx時(shí),上述結(jié)論正確的序號(hào)為 . (注:把你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:關(guān)于x的不等式x2+2ax+4>0對(duì)一切 恒成立;q:函數(shù)f(x)=-(5-2a)x在R上是減函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)a的取值范圍( )。
A.
B.B、
C.C、
D.a≥-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).

(Ⅰ)解該不等式;

(Ⅱ)定義區(qū)間(m,n)的長度為d=n﹣m,若a∈R,求該不等式解集表示的區(qū)間長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:
①原命題為真,它的否命題為假;
②原命題為真,它的 逆命題不一定為真;
③若命題的逆命題為真,則它的否命題一定為真;
④若命題的逆否命題為真,則它的否命題一定為真;
⑤“若 m>1 ,則 mx2-2(m+1)x+m+3>0 的解集為R”的逆命題.
其中真命題是.(把你認(rèn)為正確命題的序號(hào)都填在橫線上)

查看答案和解析>>

同步練習(xí)冊(cè)答案