【題目】如圖,在三棱錐中,NCD的中點,MAC上一點.

1)若MAC的中點,求證:AD//平面BMN

2)若,平面平面BCD,,求直線AC與平面BMN所成的角的余弦值。

【答案】(1)詳見解析(2)

【解析】

1)由,即可證明出AD//平面BMN;

2)向量法,建立空間直角坐標系,求出以及面BMN的法相量,利用直線AC與平面BMN所成的角為,則即可求出AC與平面BMN所成的角的正弦值,進而求出余弦值。

1)證明:如圖,在中,因為M,N分別為棱ACCD的中點,連接MN

所以,又平面BMN平面BMN,

所以平面BMN

2)解:取BD的中點O,連接AO,因為,所以,又因為平面平面BCD,平面平面BCD=BD,平面ABO,

所以平面BCD,所以.

平面ABO

所以平面ABO,

平面ABO,所以

連接ON,所以,所以,

如圖建系,

,則,

因為,所以,

所以,則

所以,則

設平面BMN的一個法向量為,

,即

,則

設直線AC與平面BMN所成的角為,

,所以,

所以直線AC與平面BMN所成的角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了適應新高考改革,某校組織了一次新高考質量測評(總分100分),在成績統(tǒng)計分析中,抽取12名學生的成績以莖葉圖形式表示如圖,學校規(guī)定測試成績低于87分的為未達標,分數(shù)不低于87分的為達標”.

1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);

2)在這12名學生中從測試成績介于80~90之間的學生中任選2人,求至少有1達標的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點重合,且此拋物線的準線被橢圓截得的弦長為.

1)求橢圓的標準方程;

2)直線交橢圓、兩點,線段的中點為,直線是線段的垂直平分線,試問直線是否過定點?若是,請求出該定點的坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)若函數(shù)上是增函數(shù),求正數(shù)的取值范圍;

(2)當時,設函數(shù)的圖象與x軸的交點為,曲線,兩點處的切線斜率分別為,求證:+ .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了檢查生產產品的甲、乙兩條流水線的生產情況,隨機地從這兩條流水線上生產的大量產品中各抽取50件產品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在內,則為合格品,否則為不合格品.下表是甲流水線樣本的頻數(shù)分布表,下圖是乙流水線樣本的頻率分布直方圖.

甲流水線樣本的頻數(shù)分布表

質量指標值

頻數(shù)

9

10

17

8

6

乙流水線樣本的頻率分布直方圖

1)根據(jù)圖形,估計乙流水線生產的產品的該項質量指標值的中位數(shù);

2)設該企業(yè)生產一件合格品獲利100元,生產一件不合格品虧損50元,若某個月內甲、乙兩條流水線均生產了1000件產品,若將頻率視為概率,則該企業(yè)本月的利潤約為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線,(為參數(shù)),將曲線上的所有點的橫坐標縮短為原來的,縱坐標縮短為原來的后得到曲線,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為。

1)求曲線的極坐標方程和直線l的直角坐標方程;

2)設直線l與曲線交于不同的兩點A,B,點M為拋物線的焦點,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠利用隨機數(shù)表對生產的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,599,600從中抽取60個樣本,如下提供隨機數(shù)表的第4行到第6行:

32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42

84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04

32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45

若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號  

A. 522B. 324C. 535D. 578

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一商場對每天進店人數(shù)和商品銷售件數(shù)進行了統(tǒng)計對比,得到如下表格:

人數(shù)

10

15

20

25

30

35

40

件數(shù)

4

7

12

15

20

23

27

1)在答題卡給定的坐標系中畫出表中數(shù)據(jù)的散點圖,并由散點圖判斷銷售件數(shù)與進店人數(shù)是否線性相關?(給出判斷即可,不必說明理由);

2)建立關于的回歸方程(系數(shù)精確到0.01),預測進店人數(shù)為80時,商品銷售的件數(shù)(結果保留整數(shù)).

(參考數(shù)據(jù):,,,,

參考公式:,,其中,為數(shù)據(jù)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知棱長為1的正方體,點是四邊形內(含邊界)任意一點, 中點,有下列四個結論:

;②當點為中點時,二面角的余弦值;③所成角的正切值為;④當時,點的軌跡長為.

其中所有正確的結論序號是(

A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

同步練習冊答案