【題目】為了適應新高考改革,某校組織了一次新高考質量測評(總分100分),在成績統(tǒng)計分析中,抽取12名學生的成績以莖葉圖形式表示如圖,學校規(guī)定測試成績低于87分的為未達標,分數(shù)不低于87分的為達標”.

1)求這組數(shù)據(jù)的眾數(shù)和平均數(shù);

2)在這12名學生中從測試成績介于80~90之間的學生中任選2人,求至少有1達標的概率.

【答案】186,80.5;(2.

【解析】

1)找出莖葉圖中出現(xiàn)次數(shù)最多的數(shù)為眾數(shù),根據(jù)平均數(shù)公式,即可求得平均數(shù);

2)在被抽取的學生中,有2達標學生,4未達標學生,按達標和不達標兩類編號,列出從6人中任取2人的所有情況,統(tǒng)計出滿足條件的基本事件的個數(shù),根據(jù)古典概型的概率公式,即可求解.

(1)這組數(shù)據(jù)的眾數(shù)為86;

平均數(shù)為.

(2)在被抽取的學生中,有2達標學生,4未達標學生,

達標學生編號為,未達標學生編號為,,,,

則從6人中任取2,有以下情況:

,,,,,,

,,,,.15.

其中符合條件的為,,,,

,,共9.

故至少有1達標的概率.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某城市在進行創(chuàng)建文明城市的活動中,為了解居民對“創(chuàng)文”的滿意程度,組織居民給活動打分(分數(shù)為整數(shù).滿分為100分).從中隨機抽取一個容量為120的樣本.發(fā)現(xiàn)所有數(shù)據(jù)均在內.現(xiàn)將這些分數(shù)分成以下6組并畫出了樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形,回答下列問題:

(1)算出第三組的頻數(shù).并補全頻率分布直方圖;

(2)請根據(jù)頻率分布直方圖,估計樣本的眾數(shù)、中位數(shù)和平均數(shù).(每組數(shù)據(jù)以區(qū)間的中點值為代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求 的單調區(qū)間;

(2)若曲線 與直線只有一個交點, 求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90)[90,100]

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;

(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如下表所示,求數(shù)學成績在[50,90)之外的人數(shù).

分數(shù)段

[50,60)

[60,70)

[70,80)

[80,90)

xy

11

21

34

45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )

A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”

B. 事件“甲分得1張紅牌”與事件“乙分得1張藍牌”

C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”

D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),若存在(其中

1)求實數(shù)的取值范圍,

2)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發(fā)現(xiàn)成績都在內,現(xiàn)將成績按區(qū)間,,,,進行分組,繪制成如下的頻率分布直方圖.

青年組

中老年組

(1)利用直方圖估計青年組的中位數(shù)和老年組的平均數(shù);

(2)從青年組,的分數(shù)段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應的市民參加政府組織的座談會,求選出的3位市民中有2位來自分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,已知菱形的對角線交于點,點為線段的中點,,,將三角形沿線段折起到的位置,,如圖2所示.

(Ⅰ)證明:平面 平面

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,NCD的中點,MAC上一點.

1)若MAC的中點,求證:AD//平面BMN;

2)若,平面平面BCD,,求直線AC與平面BMN所成的角的余弦值。

查看答案和解析>>

同步練習冊答案