12.在直角坐標(biāo)系xOy中,已知點A(a,a),B(2,3),C(3,2).
(1)若向量$\overrightarrow{AB}$,$\overrightarrow{AC}$的夾角為鈍角,求實數(shù)a的取值范圍;
(2)若a=1,點P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上,$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),求m-n的最大值.

分析 (1)由已知點的坐標(biāo)求出$\overrightarrow{AB}、\overrightarrow{AC}$的坐標(biāo),再由向量$\overrightarrow{AB}$,$\overrightarrow{AC}$的夾角為鈍角可得$\overrightarrow{AB}•\overrightarrow{AC}$<0,且A、B、C不共線,由此列式求得實數(shù)a的取值范圍;
(2)畫出△ABC三邊圍成的區(qū)域,結(jié)合$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$可得x=m+2n,y=2m+n,解得m-n=y-x,令y-x=t,再由線性規(guī)劃知識求得m-n的最大值.

解答 解:(1)由A(a,a),B(2,3),C(3,2).
得$\overrightarrow{AB}=(2-a,3-a),\overrightarrow{AC}=(3-a,2-a)$,
由題意,$\left\{\begin{array}{l}{\overrightarrow{AB}•\overrightarrow{AC}=2(2-a)(3-a)<0}\\{\overrightarrow{AB}≠λ\overrightarrow{AC}}\end{array}\right.$,
得2<a<3且a$≠\frac{5}{2}$,
∴$a∈({2,\frac{5}{2}})∪({\frac{5}{2},3})$;
(2)a=1時,A(1,1),B(2,3),C(3,2).
作出△ABC三邊圍成的區(qū)域如圖:

∵$\overrightarrow{OP}=m\overrightarrow{AB}+n\overrightarrow{AC}$,∴(x,y)=m(1,2)+n(2,1),
即x=m+2n,y=2m+n,解得m-n=y-x,令y-x=t,
由圖知,當(dāng)直線y=x+t過點B(2,3)時,t取得最大值1,故m-n的最大值為1.

點評 本題考查平面向量的數(shù)量積運(yùn)算,考查了簡單的線性規(guī)劃,體現(xiàn)了數(shù)形結(jié)合的解題思想方法和數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題甲是“{x|$\frac{{{x^2}+x}}{x-1}$≥0}”,命題乙是“{x|log3(2x+1)≤0}”,則( 。
A.甲是乙的充分條件,但不是乙的必要條件
B.甲是乙的必要條件,但不是乙的充分條件
C.甲是乙的充要條件
D.甲既不是乙的充分條件,也不是乙的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知指數(shù)函數(shù)y=ax在[0,1]上的最大值與最小值的差為$\frac{1}{2}$,則實數(shù)a的值為(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{1}{2}$或$\frac{3}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Sn為數(shù)列{an}的前n項和,bn=$\frac{{{S_{n+1}}-{S_n}}}{{{S_n}{S_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.關(guān)于x的不等式|x+10|≥8的解集為(-∞,-18]∪[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知logab=-1,則a+4b的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若y=f(x)是R上的偶函數(shù),y=g(x)是R上的奇函數(shù),它們都是周期函數(shù),則下列一定正確的是(  )
A.函數(shù)y=g[g(x)]是偶函數(shù),函數(shù)y=f(x)g(x)是周期函數(shù)
B.函數(shù)y=g[g(x)]是奇函數(shù),函數(shù)y=f[g(x)]不一定是周期函數(shù)
C.函數(shù)y=g[g(x)]是偶函數(shù),函數(shù)y=f[g(x)]是周期函數(shù)
D.函數(shù)y=g[g(x)]是奇函數(shù),函數(shù)y=f(x)g(x)是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知-1<a<b<2,則a-b的范圍是-3<a-b<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若(a+b+c)(b+c-a)=3ab,且sinA=2sinBcosC,那么△ABC是(  )
A.直角三角形B.等邊三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

同步練習(xí)冊答案