3.已知指數(shù)函數(shù)y=ax在[0,1]上的最大值與最小值的差為$\frac{1}{2}$,則實(shí)數(shù)a的值為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$\frac{1}{2}$或$\frac{3}{2}$D.4

分析 分類由指數(shù)函數(shù)的單調(diào)性求得最值,作差求解a值得答案.

解答 解:當(dāng)0<a<1時(shí),y=ax在[0,1]上的最大值與最小值分別為1,a,則1-a=$\frac{1}{2}$,得a=$\frac{1}{2}$;
當(dāng)a>1時(shí),y=ax在[0,1]上的最大值與最小值分別為a,1,則a-1=$\frac{1}{2}$,得a=$\frac{3}{2}$.
∴實(shí)數(shù)a的值為$\frac{1}{2}$或$\frac{3}{2}$.
故選:C.

點(diǎn)評 本題考查指數(shù)函數(shù)的圖象和性質(zhì),體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.某幾何體的三視圖如圖所示,當(dāng)xy最大時(shí),該幾何體的體積為( 。
A.$\frac{5\sqrt{30}}{6}$B.$\frac{5\sqrt{30}}{4}$C.$\frac{5\sqrt{30}}{2}$D.$\frac{5\sqrt{15}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平面直角坐標(biāo)系中,雙曲線$\frac{x^2}{12}$-$\frac{y^2}{4}$=1的右焦點(diǎn)為F,一條過原點(diǎn)O且傾斜角為銳角的直線l與雙曲線C交于A,B兩點(diǎn),若△FAB的面積為8$\sqrt{3}$,則直線l的斜率為( 。
A.$\frac{{2\sqrt{13}}}{13}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{{\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=$\sqrt{a{x^2}+2ax+1}$的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍為( 。
A.(0,1)B.[0,1]C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=$\sqrt{{{log}_{\frac{1}{2}}}(3-x)}$的定義域是(  )
A.(-∞,3)B.[2,+∞)C.(2,3)D.[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)計(jì)算:0.064${\;}^{-\frac{1}{3}}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}}$+0.25${\;}^{\frac{1}{2}}}$;
(2)計(jì)算$\frac{2lg2+lg3}{{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)銳角△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=2asinA,則A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,已知點(diǎn)A(a,a),B(2,3),C(3,2).
(1)若向量$\overrightarrow{AB}$,$\overrightarrow{AC}$的夾角為鈍角,求實(shí)數(shù)a的取值范圍;
(2)若a=1,點(diǎn)P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上,$\overrightarrow{OP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),求m-n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,分別根據(jù)下列條件解三角形,其中有兩解的是( 。
A.a=7,b=14,A=30°B.b=4,c=5,B=30°C.b=25,c=3,C=150°D.a=$\sqrt{6}$,b=$\sqrt{3}$,B=60°

查看答案和解析>>

同步練習(xí)冊答案