6.已知f(x)=xlnx,g(x)=-x2+ax-3
(1)對(duì)x∈(0,+∞),不等式2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)證明:對(duì)一切x∈(0,+∞),都有$lnx>\frac{1}{e^x}-\frac{2}{ex}$.

分析 (1)由已知得a≤2lnx+x+$\frac{3}{x}$,設(shè)h(x)=2lnx+x+$\frac{3}{x}$(x>0),則h′(x)=$\frac{(x+3)(x-1)}{x2}$,由此利用導(dǎo)數(shù)性質(zhì)能求出實(shí)數(shù)a的取值范圍.
(2)問(wèn)題等價(jià)于證明xlnx>$\frac{x}{ex}$-$\frac{2}{e}$(x∈(0,+∞)),設(shè)m(x)=$\frac{x}{ex}$-$\frac{2}{e}$(x∈(0,+∞)),則m′(x)=$\frac{1-x}{ex}$,由此利用導(dǎo)數(shù)性質(zhì)求證即可.

解答 解:(1)2xlnx≥-x2+ax-3,則a≤2lnx+x+$\frac{3}{x}$,
設(shè)h(x)=2lnx+x+$\frac{3}{x}$(x>0),則h′(x)=$\frac{(x+3)(x-1)}{x2}$,
當(dāng)x∈(0,1)時(shí),h′(x)<0,h(x)單調(diào)遞減,
當(dāng)x∈(1,+∞)時(shí),h′(x)>0,h(x)單調(diào)遞增,
∴[h(x)]min=h(1)=4,
∵對(duì)一切x∈(0,+∞),2f(x)≥g(x)恒成立,
∴a≤[h(x)]min=4.
證明:(2)問(wèn)題等價(jià)于證明xlnx>$\frac{x}{ex}$-$\frac{2}{e}$(x∈(0,+∞)),
由(1)可知f(x)=xlnx(x∈(0,+∞))的最小值是-$\frac{1}{e}$,當(dāng)且僅當(dāng)x=$\frac{1}{e}$時(shí)取得.
設(shè)m(x)=$\frac{x}{ex}$-$\frac{2}{e}$(x∈(0,+∞)),則m′(x)=$\frac{1-x}{ex}$,
由題意得[m(x)]max=m(1)=-$\frac{1}{e}$,
當(dāng)且僅當(dāng)x=1時(shí)取到,從而對(duì)一切x∈(0,+∞),都有l(wèi)nx>$\frac{1}{ex}$-$\frac{2}{ex}$成立.

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,考查不等式的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)、構(gòu)造法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=2sin(ωx+ϕ),ω>0,0≤ϕ≤π是R上的偶函數(shù),且最小正周期為π
(1)求f(x)的解析式;
(2)用“五點(diǎn)法”作出函數(shù)f(x)的一個(gè)周期內(nèi)的圖象;
(3)求g(x)=f(x+$\frac{π}{6}$)的對(duì)稱軸及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.四棱錐P-ABCD的底面是菱形,∠BAD=60°,PA⊥底面ABCD,PA=AB=a,E為棱PC上點(diǎn).
(1)面EBD與面PAC能否始終垂直,證明你的結(jié)論;
(2)若E為PC中點(diǎn),求異面直線BE與PA所成角;
(3)當(dāng)△EBD面積最小時(shí),求E-BDC體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某化工廠準(zhǔn)備對(duì)某一化工產(chǎn)品進(jìn)行技術(shù)改良,現(xiàn)決定優(yōu)選加工溫度,試驗(yàn)范圍定為60~81℃,精確度要求±1℃.現(xiàn)在技術(shù)員準(zhǔn)備用分?jǐn)?shù)法進(jìn)行優(yōu)選,則最多需要經(jīng)過(guò)6次試驗(yàn)才能找到最佳溫度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=$\sqrt{3}$sin2x+cos2x的圖象向右平移m(m>0)個(gè)單位,所得函數(shù)y=g(x)的圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱,當(dāng)m取最小值時(shí),f(x)-g(x)的最大值是( 。
A.2B.2$\sqrt{2}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知△ABC的面積為9$\sqrt{3}$,且$\overrightarrow{AC}•({\overrightarrow{AB}-\overrightarrow{CB}})$=18,向量$\overrightarrow m$=(tanA+tanB,sin2C)和$\overrightarrow n$=(1,cosAcosB)是共線向量.
(Ⅰ)求角C的大。
(Ⅱ)求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn,Tn,若3n•an=(2n+1)bn,則$\frac{S_9}{T_9}$=( 。
A.$\frac{19}{27}$B.$\frac{27}{19}$C.$\frac{11}{15}$D.$\frac{15}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若“m<a”是“函數(shù)g(x)=5-x+m的圖象不過(guò)第一象限”的必要不充分條件,則實(shí)數(shù)a的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)A(0,2).若線段FA的中點(diǎn)B在拋物線上,則F到l的距離為$\sqrt{2}$,|FB|=$\frac{3\sqrt{2}}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案