16.設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)A(0,2).若線段FA的中點(diǎn)B在拋物線上,則F到l的距離為$\sqrt{2}$,|FB|=$\frac{3\sqrt{2}}{4}$.

分析 根據(jù)拋物線方程可表示出焦點(diǎn)F的坐標(biāo),進(jìn)而求得B點(diǎn)的坐標(biāo)代入拋物線方程求得p,則B點(diǎn)坐標(biāo)和拋物線準(zhǔn)線方程可求,進(jìn)而求得F到l的距離、B到該拋物線準(zhǔn)線的距離.

解答 解:依題意可知F坐標(biāo)為($\frac{p}{2}$,0)
∴B的坐標(biāo)為($\frac{p}{4}$,1)代入拋物線方程解得p=$\sqrt{2}$,
∴F到l的距離為$\sqrt{2}$;|FB|=$\frac{p}{4}$+$\frac{p}{2}$=$\frac{3\sqrt{2}}{4}$.
故答案為:$\sqrt{2}$,$\frac{3\sqrt{2}}{4}$.

點(diǎn)評(píng) 本題主要考查拋物線的定義及幾何性質(zhì),屬容易題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=xlnx,g(x)=-x2+ax-3
(1)對(duì)x∈(0,+∞),不等式2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)證明:對(duì)一切x∈(0,+∞),都有$lnx>\frac{1}{e^x}-\frac{2}{ex}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)解不等式:|2x-1|+|2x+1|≤6.
(2)求函數(shù)y=5$\sqrt{x-1}$+$\sqrt{10-2x}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a,b,c滿足a>b>c,且ac<0,則下列不等式中恒成立的個(gè)數(shù)為( 。
 ①$\frac{a}$>$\frac{c}{a}$ ②$\frac{b-a}{c}$>0 ③$\frac{^{2}}{c}$>$\frac{{a}^{2}}{c}$ ④ab>bc ⑤$\frac{a-c}{ac}$<0.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)設(shè)x≥1,y≥1,證明x+y+$\frac{1}{xy}$≤$\frac{1}{x}$+$\frac{1}{y}$+xy;
(2)設(shè)a,b,c都是正數(shù),求證:$\frac{1}{2a}$+$\frac{1}{2b}$+$\frac{1}{2c}$≥$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a>0,函數(shù)f(x)=x|x-a|.
(1)當(dāng)a=2時(shí),寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)y=f(x)在區(qū)間[0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sinθ-2cosθ
(Ⅰ)求曲線C的普通方程.
(Ⅱ)求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且Sn+an=1(n∈N*),數(shù)列{bn}滿足b1=4,bn+1=3bn-2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{bn-1}為等比數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{cn}滿足cn=anlog3(b2n-1-1),其前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知圓柱M的底面半徑為2,高為6;圓錐N的底面直徑和母線長相等.若圓柱M和圓錐N的體積相同,則圓錐N的高為6.

查看答案和解析>>

同步練習(xí)冊答案