【題目】已知正方形的邊長為2,分別以, 為一邊在空間中作正三角形, ,延長到點,使,連接, .
(1)證明: 平面;
(2)求點到平面的距離.
【答案】(1)見解析;(2)1.
【解析】試題分析:(1)證線面垂直,先證線線垂直,做出輔助線,根據(jù)長度關(guān)系,首先證得,再證得, ,根據(jù)線面垂直的判定定理得到線面垂直;(2)根據(jù)條件可得到平面,進(jìn)而點到平面的距離等于點到平面的距離,取的中點為,連接, 平面, 為點到平面的距離.
解析:
(1)連接交于點,并連接,則,又∵,
∴,又∵,∴,∴,
∵,∴平面,∵平面,∴,
∵, ,∴,∴,
即,∵,∴平面.
(2)由題知, ,且,可得四邊形為平行四邊形,∴,
又∵平面,∴平面,∵點,∴點到平面的距離等于點到平面的距離,取的中點為,連接,則由(1)可得.
在中, ,則,∴,∴平面,即為點到平面的距離.
在中, ,得點到平面的距離為1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中 ,為自然對數(shù)的底數(shù)).
(Ⅰ)若函數(shù)無極值,求實數(shù)的取值范圍;
(Ⅱ)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】深受廣大球迷喜愛的某支歐洲足球隊.在對球員的使用上總是進(jìn)行數(shù)據(jù)分析,為了考察甲球員對球隊的貢獻(xiàn),現(xiàn)作如下數(shù)據(jù)統(tǒng)計:
球隊勝 | 球隊負(fù) | 總計 | |
甲參加 | 22 | b | 30 |
甲未參加 | c | 12 | d |
總計 | 30 | e | n |
(1)求b,c,d,e,n的值,據(jù)此能否有97.7%的把握認(rèn)為球隊勝利與甲球員參賽有關(guān);
(2)根據(jù)以往的數(shù)據(jù)統(tǒng)計,乙球員能夠勝任前鋒、中鋒、后衛(wèi)以及守門員四個位置,且出場率分別為:0.2,0.5,0.2,0.1,當(dāng)出任前鋒、中鋒、后衛(wèi)以及守門員時,球隊輸球的概率依次為:0.4,0.2,0.6,0.2.則:
當(dāng)他參加比賽時,求球隊某場比賽輸球的概率;
當(dāng)他參加比賽時,在球隊輸了某場比賽的條件下,求乙球員擔(dān)當(dāng)前鋒的概率;
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究單冊書籍的成本(單位:元)與印刷冊數(shù)(單位:千冊)之間的關(guān)系,在印制某種書籍時進(jìn)行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:
印刷冊數(shù)(千冊) | |||||
單冊成本(元) |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:,方程乙:.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計算結(jié)果精確到);
印刷冊數(shù)(千冊) | ||||||
單冊成本(元) | ||||||
模型甲 | 估計值 | |||||
殘差 | ||||||
模型乙 | 估計值 | |||||
殘差 |
②分別計算模型甲與模型乙的殘差平方和,并通過比較,判斷哪個模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場調(diào)查,新需求量為千冊,若印刷廠以每冊元的價格將書籍出售給訂貨商,求印刷廠二次印刷千冊獲得的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】智能手機(jī)的出現(xiàn),改變了我們的生活,同時也占用了我們大量的學(xué)習(xí)時間.某市教育機(jī)構(gòu)從名手機(jī)使用者中隨機(jī)抽取名,得到每天使用手機(jī)時間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是: ,.
(1)根據(jù)頻率分布直方圖,估計這名手機(jī)使用者中使用時間的中位數(shù)是多少分鐘? (精確到整數(shù))
(2)估計手機(jī)使用者平均每天使用手機(jī)多少分鐘? (同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
(3)在抽取的名手機(jī)使用者中在和中按比例分別抽取人和人組成研究小組,然后再從研究小組中選出名組長.求這名組長分別選自和的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的迅速發(fā)展,越來越多的消費(fèi)者開始選擇網(wǎng)絡(luò)購物這種消費(fèi)方式某營銷部門統(tǒng)計了2019年某月錦州的十大特產(chǎn)的網(wǎng)絡(luò)銷售情況得到網(wǎng)民對不同特產(chǎn)的最滿意度和對應(yīng)的銷售額(萬元)數(shù)據(jù),如下表:
特產(chǎn)種類 | 甲 | 乙 | 丙 | 丁 | 戊 | 已 | 庚 | 辛 | 壬 | 癸 |
最滿意度 | ||||||||||
銷售額(萬元) |
求銷量額關(guān)于最滿意度的相關(guān)系數(shù);
我們約定:銷量額關(guān)于最滿意度的相關(guān)系數(shù)的絕對值在以上(含)是線性相關(guān)性較強(qiáng);否則,線性相關(guān)性較弱.如果沒有達(dá)到較強(qiáng)線性相關(guān),則采取“末位淘汰”制(即銷售額最少的特產(chǎn)退出銷售),并求在剔除“末位淘汰”的特產(chǎn)后的銷量額關(guān)于最滿意度的線性回歸方程(系數(shù)精確到).
參考數(shù)據(jù):,,,.
附:對于一組數(shù)據(jù).其回歸直線方程的斜率和截距的最小二乘法估計公式分別為:,.線性相關(guān)系數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)an= sin ,Sn=a1+a2+…+an , 在S1 , S2 , …S100中,正數(shù)的個數(shù)是( )
A.25
B.50
C.75
D.100
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com