如圖,直線AB過圓心O,交于F(不與B重合),直線相切于C,交AB于E,且與AF垂直,垂足為G,連結(jié)AC.

求證:(1);(2).

(1)證明過程詳見解析;(2)證明過程詳見解析.

解析試題分析:本題主要考查以圓為背景考查角相等的證明及相似三角形等基礎(chǔ)知識(shí),考查學(xué)生的轉(zhuǎn)化能力和推理論證能力.第一問,通過AB為直徑,所以為直角,又因?yàn)镚C切⊙O于C,所以,所以得證;第二問,利用EC與⊙O相切,得出,所以三角形相似得相似,利用相似三角形的性質(zhì),得出比例值,化簡即可,得證.
試題解析::(1)連結(jié),∵是直徑,
,∴.
,∴.
                                   .5分
(2)連結(jié),∵,  ∴.
,   ∴.
,∴.                        .10分

考點(diǎn):1.圓的切線的性質(zhì);2.相似三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,PA為⊙O的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA=10,PB=5。

求:(1)⊙O的半徑;
(2)s1n∠BAP的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,若△ABC為等腰三角形,△ABC中,AB=AC,D為CB延長線上一點(diǎn),E為BC延長線上一點(diǎn),且滿足AB2=DB·CE.

(1)求證:△ADB∽△EAC;
(2)若∠BAC=40°,求∠DAE的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(拓展深化)如圖所示,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)P,CD=10 cm,AP∶PB=1∶5,求⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,AB是⊙O的直徑,弦AC=3 cm,BC=4 cm,CD⊥AB,垂足為D,求AD、BD和CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,以梯形ABCD的對(duì)角線AC及腰AD為鄰邊作平行四邊形ACED,DC的延長線交BE于點(diǎn)F,求證:EF=BF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,過圓O外一點(diǎn)M作它的一條切線,切點(diǎn)為A,過A點(diǎn)作直線AP垂直直線OM,垂足為P.

(1)證明:OM·OPOA2;
(2)N為線段AP上一點(diǎn),直線NB垂直直線ON,且交圓OB點(diǎn).過B點(diǎn)的切線交直線ONK.證明:∠OKM=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在中,是的中點(diǎn),的中點(diǎn),的延長線交.

(Ⅰ)求的值;
(Ⅱ)若面積為,四邊形的面積為,求:的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,、、是圓上三點(diǎn),的角平分線,交圓,過作圓的切線交的 延長線于.

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案