如圖,、、是圓上三點,的角平分線,交圓,過作圓的切線交的 延長線于.

(Ⅰ)求證:;
(Ⅱ)求證:.

(Ⅰ)詳見解析;(Ⅱ)詳見解析.

解析試題分析:(Ⅰ)利用弦切角等于同弧所對的圓周角,角平分線線的性質(zhì)求解;(Ⅱ)證明,的對應邊成比例,再證,代換即得.
試題解析:(Ⅰ)是圓的切線,
,為弦所對的圓周角,,
的角平分線,,
.                       (5分)
(Ⅱ),
,
,

,
,
故有.               (10分)
考點:圓的切線的性質(zhì),相似三角形.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線AB過圓心O,交于F(不與B重合),直線相切于C,交AB于E,且與AF垂直,垂足為G,連結(jié)AC.

求證:(1);(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是⊙的直徑,弦的延長線相交于點垂直的延長線于點

求證:(1);
(2)四點共圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;
(2)PB平分∠ABD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4—1:幾何證明選講  如圖,直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于D。

(Ⅰ)證明:DB=DC;
(Ⅱ)設圓的半徑為1,BC=,延長CE交AB于點F,求△BCF外接圓的半徑。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為圓的直徑,為垂直于的一條弦,垂足為,弦交于點.

(Ⅰ)證明:四點共圓;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,設AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F(xiàn)兩點,連結(jié)AE,AF分別與CD交于G、H

(Ⅰ)設EF中點為,求證:O、、B、P四點共圓
(Ⅱ)求證:OG =OH.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,⊙的半徑為3,兩條弦,交于點,且, ,
求證:△≌△

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,BA是圓O的直徑,延長BA至E,使得AE=AO,過E點作圓O的割線交圓O于D、E,使AD=DC,

求證:;
若ED=2,求圓O的內(nèi)接四邊形ABCD的周長。

查看答案和解析>>

同步練習冊答案