【題目】如圖,在四棱錐中, ,,是的中點(diǎn),是棱上的點(diǎn),,,,.
(1)求證:平面底面;
(2)設(shè),若二面角的平面角的大小為,試確定的值.
【答案】見解析
【解析】(1)證明:∵,,是的中點(diǎn),∴,則四邊形為平行四邊形,從而.∵,∴. ……2分
∵,,是的中點(diǎn),∴.又∵,,∴,即,又,∴平面,∴平面底面.……5分
(2) 解:∵,是的中點(diǎn),∴.∵平面平面,且平面平面,∴平面.如圖,以為原點(diǎn)建立空間直角坐標(biāo)系.
則平面的法向量為.,,,.……7分
設(shè),則,,∵,∴,則,即,.在平面中,, ,設(shè)平面的法向量為,由,得 ,取,得.∴平面的一個(gè)法向量為. …10分
∵二面角的平面角的大小為,∴,解得.……12分.
【命題意圖】本題主要考查空間直線與平面垂直、平面與平面垂直、直線與直線垂直的判定與性質(zhì),二面角等基礎(chǔ)知識(shí),考查學(xué)生的空間想象能力,推理論證能力,運(yùn)算求解能力,以及數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ∥ ,求| |
(2)若 與 夾角為銳角,求x的取值范圍.
(3)若| |=2,求與 垂直的單位向量 的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(ωx﹣ )(ω>0)的最小值正周期為π
(1)求ω;
(2)若f( + )= ,且α∈(﹣ , ),求tanα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖莖葉圖表示的是甲,乙兩人在5次綜合測(cè)評(píng)中的成績(jī),其中一個(gè)數(shù)字被污損,則甲的平均成績(jī)超過乙的平均成績(jī)的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙二人參加普法知識(shí)競(jìng)答,共有10個(gè)不同的題目,其中選擇題6個(gè),判斷題4個(gè).甲、乙二人依次各抽一題.
(1)甲抽到選擇題、乙抽到判斷題的概率是多少?
(2)甲、乙二人中至少有一人抽到選擇題的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】節(jié)能減排以來(lái),蘭州市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)估計(jì)用電量落在[220,300)中的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓C的圓心在直線l:y=2x﹣4上,半徑為1,點(diǎn)A(0,3). (Ⅰ)若圓心C也在直線y=x﹣1上,過點(diǎn)A作圓C的切線,求切線的方程;
(Ⅱ)若圓C上存在點(diǎn)M,使|MA|=2|MO|(O為坐標(biāo)原點(diǎn)),求圓心C的橫坐標(biāo)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱柱中,底面為矩形,面⊥平面,===,=2,是的中點(diǎn).
(Ⅰ)求證:⊥;
(Ⅱ)求BD與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,已知(sin A+sin B+sin C)·(sin B+sin C-sin A)=3sin Bsin C.
(Ⅰ)求角A的值;
(Ⅱ)求sin B-cos C的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com