【題目】如圖莖葉圖表示的是甲,乙兩人在5次綜合測評中的成績,其中一個數(shù)字被污損,則甲的平均成績超過乙的平均成績的概率為

【答案】
【解析】解:由已知中的莖葉圖可得 甲的5次綜合測評中的成績分別為88,89,90,91,92,
則甲的平均成績: (88+89+90+91+92)=90
設(shè)污損數(shù)字為x
則乙的5次綜合測評中的成績分別為83,83,87,99,90+X
則乙的平均成績: (83+83+87+99+90+x)=88.4+
當(dāng)x=9,甲的平均數(shù)<乙的平均數(shù),即乙的平均成績超過甲的平均成績的概率為 ,
當(dāng)x=8,甲的平均數(shù)=乙的平均數(shù),即乙的平均成績不小于均甲的平均成績的概率為
甲的平均成績超過乙的平均成績的概率為1﹣ =
所以答案是:
【考點精析】認(rèn)真審題,首先需要了解莖葉圖(莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少),還要掌握平均數(shù)、中位數(shù)、眾數(shù)(⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù))的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OPQ是半徑為1,圓心角為θ的扇形,A是扇形弧PQ上的動點,ABOQ,OPAB交于點B,ACOP,OQAC交于點C.

(1)當(dāng)θ=,求點A的位置,使矩形ABOC的面積最大,并求出這個最大面積;

(2)當(dāng)θ=,求點A的位置,使平行四邊形ABOC的面積最大,并求出這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)階段全國多地空氣質(zhì)量指數(shù)“爆表”.為探究車流量與濃度是否相關(guān),現(xiàn)對北方某中心城市的車流量最大的地區(qū)進(jìn)行檢測,現(xiàn)采集到月某天個不同時段車流量與濃度的數(shù)據(jù),如下表:

車流量(萬輛/小時)

濃度 (微克/立方米)

(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)規(guī)定當(dāng)濃度平均值在,空氣質(zhì)量等級為優(yōu);當(dāng)濃度平均值在,空氣質(zhì)量等級為良;為使該城市空氣質(zhì)量為優(yōu)和良,利用該回歸方程,預(yù)測要將車流量控制在每小時多少萬輛內(nèi)(結(jié)果以萬輛做單位,保留整數(shù)).

附:回歸直線方程: ,其中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸,生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸。銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元,該企業(yè)在一個生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸,那么該企業(yè)可獲得最大利潤是___________萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,a1,前n項和Sn滿足Sn+1-Sn=()n+1(n∈N*).

(1)求數(shù)列{an}的通項公式an以及前n項和Sn;

(2)若S1,t(S1+S2),3(S2+S3)成等差數(shù)列,求實數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國人均讀書4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書),比韓國的11本、法國的20本、日本的40本、猶太人的64本少得多,是世界上人均讀書最少的國家.這個論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計結(jié)果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準(zhǔn)備進(jìn)一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內(nèi)看書人員進(jìn)行年齡調(diào)查,隨機抽取了一天名讀書者進(jìn)行調(diào)查,將他們的年齡分成6段:,,,后得到如圖所示的頻率分布直方圖.問:

1)估計在40名讀書者中年齡分布在的人數(shù);

2)求40名讀書者年齡的平均數(shù)和中位數(shù);

3)若從年齡在的讀書者中任取2名,求這兩名讀書者年齡在的人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, ,,的中點,是棱上的點,,,,.

(1)求證:平面底面;

(2)設(shè),若二面角的平面角的大小為,試確定的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)當(dāng)時,解不等式

2)若關(guān)于的方程的解集中恰好有一個元素,求的取值范圍;

(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】. 問:是否存在正數(shù)m,使得對于任意正數(shù),可使為三角形的三邊構(gòu)成三角形?如果存在:①試寫出一組x,y,m的值,②求出所有m的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案