【題目】如圖是函數(shù)的部分圖象,M,N是它與x軸的兩個不同交點,DM,N之間的最高點且橫坐標為,點是線段DM的中點.

1)求函數(shù)的解析式及上的單調增區(qū)間;

2)若時,函數(shù)的最小值為,求實數(shù)a的值.

【答案】1;單調遞增區(qū)間為;(2

【解析】

1)結合圖象特點和代入特殊點進行求解得出的解析式,進而根據(jù)正弦函數(shù)的單調性求單調增區(qū)間.

2)由求出的值域,令,結合二次函數(shù)的性質進行分類討論可求出a的值.

1)取MN中點為H,則,

因為FDM中點,且Fy軸上,

,

所以,,則,

,

又因為,則

所以,

,

又因為,則,

所以

,

又因為,則單調遞增區(qū)間為

2)因為,

所以,

,則,對稱軸為

①當時,即時,,

②當時,即時,(舍),

③當時,即時,(舍),

綜上可得:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

1)求圓心C的坐標及半徑r的大;

2)已知不過原點的直線l與圓C相切,且在x軸、y軸上的截距相等,求直線l的方程;

3)從圓外一點向圓引一條切線,切點為MO為坐標原點,且,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,離心率為,過的直線與橢圓交于兩點,且的周長為8.

(1)求橢圓的方程;

(2)直線過點,且與橢圓交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐,底面是邊長為的菱形,側面底面,, , 中點,在側棱.

求證: ;

中點,求二面角的余弦值;

是否存在,使平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)當時,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.點(2,0)關于直線yx+1的對稱點為(﹣13

B.過(x1,y1),(x2,y2)兩點的直線方程為

C.經過點(1,1)且在x軸和y軸上截距都相等的直線方程為x+y20xy0

D.直線xy40與兩坐標軸圍成的三角形的面積是8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明家的晚報在下午任何一個時間隨機地被送到,他們一家人在下午任何一個時間隨機地開始晚餐.為了計算晚報在晚餐開始之前被送到的概率,某小組借助隨機數(shù)表的模擬方法來計算概率,他們的具體做法是將每個1分鐘的時間段看作個體進行編號,編號為01,編號為02,依此類推,編號為90.在隨機數(shù)表中每次選取一個四位數(shù),前兩位表示晚報時間,后兩位表示晚餐時間,如果讀取的四位數(shù)表示的晚報晚餐時間有一個不符合實際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個四位數(shù)6548中的65不符合晚報時間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計晚報在晚餐開始之前被送到的概率為(

6548 1176 7417 4685 0950 5804 7769 7473 0395 7186

8012 4356 3517 7270 8015 4531 8223 7421 1157 8263

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐SABCD中,底面ABCD是邊長為4的菱形,∠BAD60°,SASD2,點E是棱AD的中點,點F在棱SC上,且λSA//平面BEF

1)求實數(shù)λ的值;

2)求三棱錐FEBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校組織了一次新高考質量測評,在成績統(tǒng)計分析中,某班的數(shù)學成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

1)求該班數(shù)學成績在的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學平均分;

3)若規(guī)定90分及其以上為優(yōu)秀,現(xiàn)從該班分數(shù)在80分及其以上的試卷中任取2份分析學生得分情況,求在抽取的2份試卷中至少有1份優(yōu)秀的概率.

查看答案和解析>>

同步練習冊答案