17.已知?jiǎng)訄AP過點(diǎn)A(-2,0)且與圓B:(x-2)2+y2=36內(nèi)切.
(1)求動(dòng)圓圓心P的軌跡E的方程;
(2)若軌跡E上有一動(dòng)點(diǎn)Q,滿足∠AQB=60°,求|QA|•|QB|的值.

分析 (1)依題意,不難得到||PA|+|PB|=6,轉(zhuǎn)化為橢圓定義,求出動(dòng)圓圓心P的軌跡的方程.
(2)利用余弦定理及橢圓的定義,建立方程,即可得出結(jié)論.

解答 解:(1)依題意,動(dòng)圓與定圓相內(nèi)切,得|PA|+|PB|=6,可知P到兩個(gè)定點(diǎn)A、B的距離的和為常數(shù)6,并且常數(shù)大于|AB|,所以點(diǎn)P的軌跡為以A、B焦點(diǎn)的橢圓,可以求得a=3,c=2,b=$\sqrt{5}$,
所以動(dòng)圓圓心P的軌跡E的方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1;
(2)設(shè)|QA|=m,|QB|=n,
則由余弦定理可得16=m2+n2-2mn×$\frac{1}{2}$=m2+n2-mn=(m+n)2-3mn,
∵m+n=6,
∴mn=$\frac{20}{3}$,即|QA|•|QB|=$\frac{20}{3}$.

點(diǎn)評(píng) 本題考查圓與圓的位置關(guān)系,橢圓的定義,余弦定理的運(yùn)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,直二面角A-BD-C,平面ABD⊥平面BCD,若其中給定 AB=AD=2,∠BAD=90°,∠BDC=60°,BC⊥CD.
(Ⅰ)求AC與平面BCD所成的角;
(Ⅱ)求點(diǎn)A到BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xoy中,已知曲線C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ為參數(shù)).以原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸,與直角坐標(biāo)系xoy取相同的單位長(zhǎng)度,建立極坐標(biāo)系.已知直線l的極坐標(biāo)方程為ρ(2cosθ-sinθ)=6.
(1)將曲線C1上的所有點(diǎn)的橫坐標(biāo),縱坐標(biāo)分別伸長(zhǎng)為原來的$\sqrt{3}$,2倍后得到曲線C2,試寫出曲線C2的參數(shù)方程和直線l的直角坐標(biāo)方程;
(2)求曲線C2上求一點(diǎn)P,使P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.對(duì)于實(shí)數(shù)x∈(0,$\frac{π}{2}$),f(x)=$\frac{1}{{9{{sin}^2}x}}$+$\frac{4}{{9{{cos}^2}x}}$.
(1)若f(x)≥t恒成立,求t的最大值M;
(2)在(1)的條件下,求不等式x2+|x-2|+M≥3的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知正六棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)相等,體積為96$\sqrt{3}$,其三視圖中的俯視圖如圖所示,則其左視圖的面積是( 。
A.$8\sqrt{3}$B.16C.$16\sqrt{3}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個(gè)圓錐與一個(gè)球的體積相等,圓錐的底面半徑是球半徑的$\frac{3}{2}$倍,則圓錐的高與球半徑之比為( 。
A.16:9B.9:16C.27:8D.8:27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.拋物線y2=$\frac{1}{4}$x上一點(diǎn)M到焦點(diǎn)的距離為1,則點(diǎn)M的橫坐標(biāo)為$\frac{15}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為評(píng)估設(shè)備M生產(chǎn)某種零件的性能,從設(shè)備M生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:
直徑/mm5859616263646566676868707173合計(jì)
件數(shù)11356193318442121100
經(jīng)計(jì)算,樣本的平均值μ=65,標(biāo)準(zhǔn)差σ=2.2,以頻率值作為概率的估計(jì)值.
(Ⅰ)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為X,并根據(jù)以下不等式進(jìn)行評(píng)判(P表示相應(yīng)事件的概率):①P(μ-σ<X≤μ+σ)≥0.6826;②P(μ-2σ<X≤μ+2σ)≥0.9544;③P(μ-3σ<X≤μ+3σ)≥0.9974.評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;若僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部都不滿足,則等級(jí)為。嚺袛嘣O(shè)備M的性能等級(jí).
(Ⅱ)將直徑小于等于μ-2σ或直徑大于μ+2σ的零件認(rèn)為是次品.
(i)從設(shè)備M的生產(chǎn)流水線上隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)Y的數(shù)學(xué)期望EY;
(ii)從樣本中隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)Z的數(shù)學(xué)期望EZ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知${({\frac{2}{3}})^y}={({\frac{3}{2}})^{{x^2}+1}}$,則y的最大值是( 。
A.-2B.-1C.0D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案