已知函數(shù)f(x)=+3-ax.
(1)若f(x)在x=0處取得極值,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若關(guān)于x的不等式f(x)≥+ax+1在x≥時(shí)恒成立,試求實(shí)數(shù)a的取值范圍.

(Ⅰ);(II)的取值范圍是.

解析試題分析:(Ⅰ)由題可知,函數(shù)的導(dǎo)函數(shù)在處函數(shù)值為零,故可求得的值,故而得到函數(shù)的解析式,然后利用導(dǎo)數(shù)求出(1,f(1))的斜率,利用點(diǎn)斜式寫(xiě)出切線方程;(II)由(Ⅰ)已知了函數(shù)解析式,將給出的不等式分離參數(shù),構(gòu)造函數(shù)求出參數(shù)的范圍.
試題解析:(Ⅰ), ∵處取得極值,
,       2分
  4分
曲線在點(diǎn)處的切線方程為:
.       5分
(II)由,得
,∵,∴,      7分
, 則.     8分
,則
,∴,∴上單調(diào)遞增,      10分
,因此,故上單調(diào)遞增,
,∴,
的取值范圍是.     12分
考點(diǎn):導(dǎo)數(shù)的幾何意義、直線方程、分離參數(shù)法、利用導(dǎo)數(shù)求函數(shù)最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時(shí),求曲線處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)在(2)的條件下,設(shè)函數(shù),若對(duì)于[1,2],
[0,1],使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),(其中常數(shù)).
(1)當(dāng)時(shí),求的極大值;
(2)試討論在區(qū)間上的單調(diào)性;
(3)當(dāng)時(shí),曲線上總存在相異兩點(diǎn)、,使得曲線
在點(diǎn)、處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中,
(Ⅰ)若的最小值為,試判斷函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由;
(Ⅱ)若函數(shù)的極小值大于零,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)試討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的極值;
(Ⅲ)對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8b/8/14nxn2.png" style="vertical-align:middle;" />.求關(guān)于的不等式的解集;
(Ⅱ)當(dāng)時(shí),為常數(shù),且,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是函數(shù)的兩個(gè)極值點(diǎn),其中,
(Ⅰ) 求的取值范圍;
(Ⅱ) 若,求的最大值(e是自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1設(shè)
(1)當(dāng)時(shí),求f(x)的單調(diào)區(qū)間;
(2)求f(x)的零點(diǎn)個(gè)數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案