5.(1)若$tanα=\frac{1}{2}$,求sin2α+sinαcosα的值
(2)化簡$\frac{1+sinx}{cosx}•\frac{sin2x}{{2{{cos}^2}(\frac{π}{4}-\frac{x}{2})}}$.

分析 (1)方法一:采用切化弦思想.方法二:弦化切的思想.
(2)利用誘導(dǎo)公式和二倍角公式進(jìn)行化解即可.

解答 解:(1)解法一:采用切化弦思想;
∵$\frac{sinα}{cosα}$=tanα=$\frac{1}{2}$,
∴2sinα=cosα,
又∵sin2α+cos2α=1,
解得:sin2α=$\frac{1}{5}$
則:sin2α+sinαcosα=sin2α+sinα•2sinα=3sin2α=$\frac{3}{5}$.
解法二:采用弦化切的思想:
∵tanα=$\frac{1}{2}$,
則:sin2α+sinαcosα=$\frac{si{n}^{2}α+sinαcosα}{1}=\frac{si{n}^{2}α+sinαcosα}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{ta{n}^{2}α+tanα}{ta{n}^{2}α+1}$=$\frac{(\frac{1}{2})^{2}+\frac{1}{2}}{(\frac{1}{2})^{2}+1}$=$\frac{3}{5}$.
(2)$\frac{1+sinx}{cosx}•\frac{sin2x}{{2{{cos}^2}(\frac{π}{4}-\frac{x}{2})}}$;
原式=$\frac{1+sinx}{cosx}•\frac{2sinxcosx}{cos2(\frac{π}{4}-\frac{x}{2})+1}$=$\frac{1+sinx}{cosx}•\frac{2sinxcosx}{sinx+1}=2sinx$.

點(diǎn)評(píng) 本題考查了采用切化弦和弦化切的思想以及誘導(dǎo)公式和二倍角公式進(jìn)行化解計(jì)算的能力.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.方程組$\left\{\begin{array}{l}{2x-y=3}\\{x+y=3}\end{array}\right.$的解是( 。
A.$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$B.$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$C.$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$D.$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓心為C的圓(x-1)2+y2=6內(nèi)有點(diǎn)P(2,2),過點(diǎn)P作直線l交圓C于A,B兩點(diǎn).
(1)當(dāng)弦AB被點(diǎn)P平分時(shí),求直線l的方程.
(2)當(dāng)AB長為2$\sqrt{5}$時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z滿足:$\frac{3-i}{z-3i}$=1+i,則|z|等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)組:$({\frac{1}{1}}),({\frac{1}{2},\frac{2}{1}}),({\frac{1}{3},\frac{2}{2},\frac{3}{1}}),({\frac{1}{4},\frac{2}{3},\frac{3}{2},\frac{4}{1}}),…,({\frac{1}{n},\frac{2}{n-1},\frac{3}{n-2},…\frac{n-1}{2},\frac{n}{1}})$,記該數(shù)組為:(a1),(a2,a3),(a3,a4,a5),…則a2009=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)為奇函數(shù)的是(  )
A.y=$\sqrt{x}$B.y=ex-e-xC.y=x2D.y=2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知A=$\frac{π}{4}$,b2-a2=$\frac{1}{2}$c2
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值及△ABC的外接圓的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.用分析法證明不等式:$\sqrt{a+1}$-$\sqrt{a}$<$\sqrt{a-1}$-$\sqrt{a-2}$(a≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.把110010(2)化為十進(jìn)制數(shù)的結(jié)果是50.

查看答案和解析>>

同步練習(xí)冊(cè)答案