【題目】已知函數(shù)的圖象與軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為,且圖象過點(diǎn)
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)將函數(shù)的圖象向右平移個單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若關(guān)于的方程,在區(qū)間上有且只有一個實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)(3)或
【解析】
(1)計算周期得到,再代入點(diǎn),計算得到答案.
(2)計算得到答案.
(3)根據(jù)平移和伸縮變換得到,,畫出函數(shù)圖像得到答案.
(1)圖象與軸的交點(diǎn),相鄰兩個交點(diǎn)之間的距離為,即,即;
∵,解得,那么.
∵.圖象過點(diǎn)代入可求得,
∴解析式;
(2),是單調(diào)遞增區(qū)間,
即,解得,
∴函數(shù)的單調(diào)遞增區(qū)間為;
(3);將的圖象向右平移個單位后,得到的圖象,再將所得圖象所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到的圖象,即
∵,∴
在上只有一個實(shí)數(shù)解,即圖象與只有一個交點(diǎn),
由的圖象可知:實(shí)數(shù)的取值范圍為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)過原點(diǎn)作函數(shù)的切線,求的方程;
(Ⅱ)若對于任意恒成立,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【題目】已知拋物線的焦點(diǎn)曲線的一個焦點(diǎn), 為坐標(biāo)原點(diǎn),點(diǎn)為拋物線上任意一點(diǎn),過點(diǎn)作軸的平行線交拋物線的準(zhǔn)線于,直線交拋物線于點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)求證:直線過定點(diǎn),并求出此定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)雷鋒精神前半年內(nèi)某單位餐廳的固定餐椅經(jīng)常有損壞,學(xué)習(xí)雷鋒精神時全修好;單位對學(xué)習(xí)雷鋒精神前后各半年內(nèi)餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據(jù)如下:
損壞餐椅數(shù) | 未損壞餐椅數(shù) | 總 計 | |
學(xué)習(xí)雷鋒精神前 | 50 | 150 | 200 |
學(xué)習(xí)雷鋒精神后 | 30 | 170 | 200 |
總 計 | 80 | 320 | 400 |
(1)求:學(xué)習(xí)雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神是否有關(guān)?
(2)請說明是否有97.5%以上的把握認(rèn)為損毀餐椅數(shù)量與學(xué)習(xí)雷鋒精神有關(guān)?
參考公式: ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線: , : ,動點(diǎn)分別在直線, 上移動, , 是線段的中點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)不經(jīng)過坐標(biāo)原點(diǎn)且斜率為的直線交軌跡于點(diǎn),點(diǎn)滿足,若點(diǎn)在軌跡上,求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個交點(diǎn)為, 的周長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為(為參數(shù)),圓的極坐標(biāo)方程為.
(1)求直線的普通方程與圓的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)如圖,在四棱錐中, 平面,底面是菱形, , 為與的交點(diǎn), 為上任意一點(diǎn).
(1)證明:平面平面;
(2)若平面,并且二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,( 為參數(shù)).
(1)將兩曲線化成普通坐標(biāo)方程;
(2)求兩曲線的公共弦長及公共弦所在的直線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com