8.如圖,四棱柱ABCD-A1B1C1D1中,底面ABCD和側面BCC1B1都是矩形,E是CD的中點,D1E⊥CD,AB=2BC=2.
(Ⅰ)求證:D1E⊥底面ABCD;
(Ⅱ)若直線BD1與平面ABCD所成的角為$\frac{π}{3}$,求四棱錐D1-ABED體積.

分析 (I)由矩形性質得BC⊥CD,BC⊥CC1,從而BC⊥平面DCC1D1,得出BC⊥D1E,又D1E⊥CD得出D1E⊥底面ABCD;
(II)求出BE,根據(jù)∠D1BE=$\frac{π}{3}$得出D1E,即棱錐D1-ABED的高,代入體積公式計算即可.

解答 證明:(Ⅰ)∵底面ABCD和側面BCC1B1都是矩形,
∴BC⊥CD,BC⊥CC1,
又∵CD∩CC1=C,CD?平面DCC1D1,CC1?平面DCC1D1,
∴BC⊥平面DCC1D1,
∵D1E?平面DCC1D1
∴BC⊥D1E,
又∵D1E⊥CD,BC∩CD=C,BC?平面ABCD,CD?平面ABCD,
∴D1E⊥底面ABCD.
解:(Ⅱ)∵D1E⊥底面ABCD,BE?平面ABCD,
∴D1E⊥BE.∠D1BE為BD1與平面ABCD所成的角,即∠D1BE=$\frac{π}{3}$.
∵BC=CE=1,BC⊥CD,
∴BE=$\sqrt{2}$,
∴D1E=$\sqrt{3}$BE=$\sqrt{6}$.
V${\;}_{{D}_{1}-ABED}$=$\frac{1}{3}{S}_{梯形ABED}•{D}_{1}E$=$\frac{1}{3}×\frac{1}{2}×(1+2)×1×\sqrt{6}$=$\frac{\sqrt{6}}{2}$.

點評 本題考查了線面垂直的判定,棱錐的體積計算,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.給定集合A={a1,a2,a3,…,an}(n∈N*,n≥3)中,定義ai+aj(1≤i<j≤n,i,j∈N*)中所有不同值的個數(shù)為集合A兩元素和的容量,用L(A)表示.若數(shù)列{an}是公差不為0的等差數(shù)列,設集合A={a1,a2,a3,…,a2016},則L(A)=4029.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在△ABC中,內角A,B,C的對邊分別為a,b,c,若a=sinB+cosB=$\sqrt{2}$,b=2,則角A的值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,三棱柱$ABC-A_1^{\;}B_1^{\;}C_1^{\;}$中,$A_1^{\;}A⊥底面ABC$,$AC=AB=AA_1^{\;}=4$,∠BAC=90°,點D是棱$B_1^{\;}C_1^{\;}$的中點.
(Ⅰ)求證:$A_1^{\;}D⊥$平面$BB_1^{\;}C_1^{\;}C$;
(Ⅱ)求三棱錐$C_1^{\;}-ADC$的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,平行四邊形ABCD中,CD=1,∠BCD=60°,且BD⊥CD,正方形ADEF所在平面和平面ABCD垂直,G,H分別是DF,F(xiàn)C的中點.
(1)求證:GH∥平面CDE;
(2)求證:BD⊥平面CDE;
(3)求三棱錐C-ADG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.用數(shù)學歸納法證明不等$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n}$>$\frac{23}{24}$(n≥2)的過程中,由n=k遞推到n=k+1時,不等式左邊( 。
A.增加了一項$\frac{1}{2(k+1)}$B.增加了一項$\frac{1}{2k+1}+\frac{1}{2(k+1)}$
C.增加了$\frac{1}{2k+1}+\frac{1}{2(k+1)}$,又減少了$\frac{1}{k+1}$D.增加了 $\frac{1}{2(k+1)}$,又減少了$\frac{1}{k+1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知拋物線y2=2px(1<p<3)的焦點為F,拋物線上的點M(x0,1)到準線的距離為$\frac{5}{4}$
(1)求拋物線的標準方程;
(2)設直線MF與拋物線的另一交點為N,求$\frac{|MF|}{|NF|}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,已知直線l與拋物線y2=2px相交于A(x1,y1),B(x2,y2)兩點,與x軸相交于點M(1,0)線段AB中點坐標(2,1)
(1)求拋物線方程;
(2)求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知A、B為拋物線C:y2=4x上的不同的兩點,且$\overrightarrow{FA}+4\overrightarrow{FB}=\overrightarrow 0$,則$|{\overrightarrow{AB}}|$=(  )
A.$\frac{25}{3}$B.$\frac{25}{8}$C.$\frac{100}{9}$D.$\frac{25}{4}$

查看答案和解析>>

同步練習冊答案