已知圓C1:x2+y2=1與圓C2:(x-1)2+(y+1)2=1交于A,B兩點,則直線AB的方程為
 
考點:圓與圓的位置關(guān)系及其判定,相交弦所在直線的方程
專題:直線與圓
分析:將兩個方程相減,即可得到公共弦AB的方程,然后根據(jù)半弦長與弦心距及圓半徑,構(gòu)成直角三角形,滿足勾股定理,易求出公共弦AB的長.
解答: 解:圓C1:x2+y2=1與圓C2:(x-1)2+(y+1)2=1交于A,B兩點,則直線AB的方程為:
x2+y2-1-[(x-1)2+(y+1)2-1]=0
即x-y-1=0
故答案為:x-y-1=0.
點評:本題考查的知識點是圓與圓的位置關(guān)系,直線與圓的位置關(guān)系,弦長的求法,其中將兩個圓方程相減,直接得到公共弦AB的方程可以簡化解題過程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,且A,B,C成等差數(shù)列,三邊a,b,c成等比數(shù)列,b=
3
,則△ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2+2x-4y+1=0關(guān)于直線2ax-by+2=0(a>0,b>0)對稱,則
1
a
+
4
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A滿足{1}?A⊆{1,2,3},則集合A的個數(shù)為( 。
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A=120°,若三邊長構(gòu)成公差為4的等差數(shù)列,則最長的邊長為( 。
A、15B、14C、10D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|a≤x≤a+3},B={x|log2(x2-4x+3)>3}.
(1)若a=-2,求A∩∁RB;
(2)若A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(3x-2)=x-1(x∈[0,2]),函數(shù)g(x)=f(x-2)+3.
(1)求函數(shù)y=f(x)與y=g(x)的解析式,并求出f(x),g(x)的定義域;
(2)設(shè)h(x)=[g(x)]2+g(x2),試求函數(shù)y=h(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過原點作圓x2-2ax+y2=0的弦,求這些弦的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+a)+ax
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若a∈(-1,0),函數(shù)g(x)=a|f′(x)|的圖象上存在P1,P2兩點,其橫坐標滿足1<x1<x2<6,且g(x)的圖象在此兩點處的切線互相垂直,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案