9.已知直線的極坐標方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,求點A(4,$\frac{7π}{4}$)到這條直線的距離$\frac{\sqrt{2}}{2}$..

分析 把極坐標化為直角坐標,利用點到直線的距離公式即可得出.

解答 解:直線的極坐標方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,展開為$\frac{\sqrt{2}}{2}$ρ(sinθ+cosθ)=$\frac{\sqrt{2}}{2}$,化為直角坐標方程:x+y-1=0.
點A(4,$\frac{7π}{4}$)化為直角坐標$(2\sqrt{2},-2\sqrt{2})$.
點A到這條直線的距離d=$\frac{|2\sqrt{2}-2\sqrt{2}-1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點評 本題考查了極坐標與直角坐標方程互化、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx+$\frac{1}{2}$ax2-2bx
(1)設(shè)點a=-3,b=1,求f(x)的最大值;
(2)當a=0,b=-$\frac{1}{2}$時,方程2mf(x)=x2有唯一實數(shù)解,求正數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知曲線C的極坐標方程為ρcos2θ+4cosθ-ρ=0((ρ≥0),直線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=1+tsinα\end{array}\right.$(t為參數(shù),0°≤α<180°).
(1)求曲線C的直角坐標方程與直線l的普通方程;
(2)若直線l與曲線C有且只有一個交點,求α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知圓C經(jīng)過兩點A(1,1),B(-2,-2),且在y軸上截得的弦長為4$\sqrt{2}$,半徑小于4.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A、B兩點,且OA⊥OB(O是坐標原點),求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.實數(shù)x,y滿足x=$\sqrt{9-{y}^{2}}$,則z=$\frac{y}{x+1}$的取值范圍[-3,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在平面直角坐標系xOy中,點P的直角坐標為(1,-$\sqrt{3}$),若以原點O為極點,x軸正半軸為極軸建立極坐標系,則點P的極坐標可以是$(2,\frac{5π}{3})$.(θ∈((0,2π))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若關(guān)于x的方程22x+a•2x+a+1=0只有一個實根,則實數(shù)a的取值范圍為(-∞,-1]$∪\{2-2\sqrt{2}\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在一個港口,相鄰兩次高潮發(fā)生的時間相距12h,低潮時水深為9m,高潮時水深為15m.每天潮漲潮落時,該港口水的深度y(m)關(guān)于時間t(h)的函數(shù)圖象可以近似地看成函數(shù)y=Asin(ωt+φ)+k的圖象,其中0≤t≤24,且t=3時漲潮到一次高潮,則該函數(shù)的解析式可以是( 。
A.$y=3sin\frac{π}{6}t+12$B.$y=-3sin\frac{π}{6}t+12$C.$y=3sin\frac{π}{12}t+12$D.$y=3cos\frac{π}{12}t+12$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x3+ax2+b(a,b∈R)
(1)若函數(shù)f(x)在x=1處取得極值2,求a,b的值;
(2)求試討論f(x)的單調(diào)性;
(3)若b=c-a(實數(shù)c是a與無關(guān)的常數(shù)),當函數(shù)f(x)有三個不同的零點時,a的取值范圍恰好是$(-∞,-3)∪(1,\frac{3}{2})∪(\frac{3}{2},+∞)$,求c的值.

查看答案和解析>>

同步練習冊答案