19.已知函數(shù)f(x)=lnx+$\frac{1}{2}$ax2-2bx
(1)設點a=-3,b=1,求f(x)的最大值;
(2)當a=0,b=-$\frac{1}{2}$時,方程2mf(x)=x2有唯一實數(shù)解,求正數(shù)m的取值范圍.

分析 (1)a=-3,b=1,求出函數(shù)的導數(shù),得到函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值即可;
(2)方程2mf(x)=x2有唯一實數(shù)解,即x2-2mlnx-2mx=0有唯一實數(shù)解,設g(x)=x2-2mlnx-2mx,利用導數(shù)可得其最小值為g(x2).則$\left\{\begin{array}{l}{g{(x}_{2})=0}\\{g′{(x}_{2})=0}\end{array}\right.$,即2lnx2+x2-1=0.設h(x)=2lnx+x-1(x>0),再利用導數(shù)研究其單調(diào)性即可得出答案.

解答 解:(1)a=-3,b=1時,f(x)=lnx-$\frac{3}{2}$x2-2x,
f′(x)=$\frac{1}{x}$-3x-2,f″(x)=-$\frac{1}{x}$-3<0,
∴f′(x)在(0,+∞)遞減,
而f′($\frac{1}{3}$)=0,
∴f(x)在(0,$\frac{1}{3}$)遞增,在($\frac{1}{3}$,+∞)遞減,
∴f(x)max=f($\frac{1}{3}$)=-ln3-$\frac{5}{6}$.
(2)∵方程2mf(x)=x2有唯一實數(shù)解,即x2-2mlnx-2mx=0有唯一實數(shù)解,
設g(x)=x2-2mlnx-2mx,則g′(x)=$\frac{2{(x}^{2}-mx-m)}{x}$.
令g′(x)=0,x2-mx-m=0.
∵m>0,x>0,
∴x1=$\frac{m-\sqrt{{m}^{2}+4m}}{2}$<0(舍去),x2=$\frac{m+\sqrt{{m}^{2}+4m}}{2}$.
當x∈(0,x2)時,g′(x)<0,g(x)在(0,x2)上單調(diào)遞減;當x∈(x2,+∞)時,g′(x)>0,g(x)在(x2,+∞)上單調(diào)遞增.
∴g(x)最小值為g(x2).
則$\left\{\begin{array}{l}{g{(x}_{2})=0}\\{g′{(x}_{2})=0}\end{array}\right.$,即 $\left\{\begin{array}{l}{{{x}_{2}}^{2}-2m(l{nx}_{2}{+x}_{2})=0}\\{{{x}_{2}}^{2}-{mx}_{2}-m=0}\end{array}\right.$,
∴2mlnx2+mx2-m=0即2lnx2+x2-1=0.
設h(x)=2lnx+x-1(x>0),h′(x)=$\frac{2}{x}$+1>0恒成立,
故h(x)在(0,+∞)單調(diào)遞增,h(x)=0至多有一解.
又h(1)=0,
∴x2=1,
即 $\frac{m+\sqrt{{m}^{2}+4m}}{2}$=1,解得m=$\frac{1}{2}$.

點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了問題的轉(zhuǎn)化能力,考查了分類討論的思想方法,考查了推理能力和計算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知x,y∈R,若|x|+|y+1|+|x-1|+|y-2|≤4,則x+y的取值范圍為[-1,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=log2(x+1)的定義域是( 。
A.{x|x>-1}B.{x|x≠-1}C.{x|x>1}D.R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且AD=$\frac{1}{3}$DB,點C為圓O上一點,且BC=$\sqrt{3}$AC.點P在圓O所在平面上的正投影為點D,PD=BD.
(Ⅰ)求證:CD⊥PA;
(Ⅱ)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=lnx.
(Ⅰ)求函數(shù)f(x)的圖象在x=1處的切線方程;
(Ⅱ)是否存在實數(shù)m,使得對任意的$x∈(\frac{1}{2},+∞)$,都有函數(shù)$y=f(x)+\frac{m}{x}$的圖象在$g(x)=\frac{e^x}{x}$的圖象的下方?若存在,請求出最大整數(shù)m的值;若不存在,請說理由.
(參考數(shù)據(jù):ln2=0.6931,ln3=1.0986,$\sqrt{e}=1.6487,\root{3}{e}=1.3956$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設D=$|\begin{array}{l}{1}&{-1}&{0}&{2}\\{1}&{0}&{4}&{1}\\{2}&{0}&{3}&{0}\\{1}&{2}&{3}&{4}\end{array}|$,求A41+A42+A43+A44,其中A4j(j=1,2,3,4)為元素a4j的代數(shù)余子式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-$\frac{a-1}{x}$+2a(a∈R)
(Ⅰ)若f(x)的圖象在點(1,f(1))處的切線與直線x+2y-1=0垂直,求a的值;
(Ⅱ)若f(x)≤ax+1在[1,+∞)恒成立,求a的取值范圍;
(Ⅲ)若n∈N*,證明:ln(n+1)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{n}{2(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.以直角坐標系的原點為極點,x非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=2sinθ,則曲線C的直角坐標方程為x2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知直線的極坐標方程為ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,求點A(4,$\frac{7π}{4}$)到這條直線的距離$\frac{\sqrt{2}}{2}$..

查看答案和解析>>

同步練習冊答案