【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如表:
網(wǎng)購金額 (單位:千元) | 頻數(shù) | 頻率 |
3 | ||
9 | ||
15 | ||
18 | ||
合計 | 60 |
若將當日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為.
(1)確定,,,的值,并補全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當日評為“皇冠店”,試判斷該網(wǎng)店當日能否被評為“皇冠店”.
【答案】(1) ,,圖見解析;(2)網(wǎng)店當日不能被評為“皇冠店”.
【解析】試題分析:(1)由題意,得,從而得解;
(2)由頻率分布直方圖的每一個小矩形的面積乘以橫坐標的中點值求和得平均數(shù),中位數(shù)左邊和右邊的小長方形的面積和是相等的,進而比較即可.
試題解析:
(1)由題意,得,
化簡,得,
解得,.
∴,.
補全的頻率分布直方圖如圖所示:
(2)設(shè)這60名網(wǎng)友的網(wǎng)購金額的平均數(shù)為.
則(千元)
又∵,.
∴這60名網(wǎng)友的網(wǎng)購金額的中位數(shù)為(千元),
∵平均數(shù),中位數(shù),
∴根據(jù)估算判斷,該網(wǎng)店當日不能被評為“皇冠店”.
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC為等腰直角三角形, , , 分別是邊和的中點,現(xiàn)將沿折起,使平面, 分別是邊和的中點,平面與, 分別交于, 兩點.
(1)求證: ;
(2)求二面角的余弦值;
(3)求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)橢圓: 的左、右焦點分別為,上頂點為,過點與垂直的直線交軸負半軸于點,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、、三點的圓恰好與直線: 相切,求橢圓的方程;
(III)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè) 為橢圓 上任一點,, 為橢圓的焦點,,離心率為 .
(1)求橢圓的標準方程;
(2)直線 經(jīng)過點 ,且與橢圓交于 , 兩點,若直線 ,, 的斜率依次成等比數(shù)列,求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某禮品店要制作一批長方體包裝盒,材料是邊長為的正方形紙板.如圖所示,先在其中相鄰兩個角處各切去一個邊長是的正方形,然后在余下兩個角處各切去一個長、寬分別為、的矩形,再將剩余部分沿圖中的虛線折起,做成一個有蓋的長方體包裝盒.
(1)求包裝盒的容積關(guān)于的函數(shù)表達式,并求函數(shù)的定義域;
(2)當為多少時,包裝盒的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在測試中,客觀題難度的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級240名學生進行一次測試,共5道客觀題,測試前根據(jù)對學生的了解,預(yù)估了每道題的難度,如表所示:
題號 | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測試后,從中隨機抽取了20名學生的答題數(shù)據(jù)進行統(tǒng)計,結(jié)果如表:
(Ⅰ)根據(jù)題中數(shù)據(jù),估計中240名學生中第5題的實測答對人數(shù);
(Ⅱ)從抽樣的20名學生中隨機抽取2名學生,記這2名學生中第5題答對的人數(shù)為,求的分布列和數(shù)學期望;
(Ⅲ)試題的預(yù)估難度和實測難度之間會有偏差.設(shè)為第題的實測難度,請用和設(shè)計一個統(tǒng)計量,并制定一個標準來判斷本次測試對難度的預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知正方體的棱長為1,點是棱上的動點,是棱上一點,.
(1)求證:;
(2)若直線平面,試確定點的位置,并證明你的結(jié)論;
(3)設(shè)點在正方體的上底面上運動,求總能使與垂直的點所形成的軌跡的長度.(直接寫出答案)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(>0, ≠1, ≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求實數(shù)的值;
(2)當=1時,判斷函數(shù)在(﹣1,1)上的單調(diào)性,并給出證明;
(3)若且,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com