【題目】在如圖所示的五面體中, , , ,四邊形為正方形,平面平面

(1)證明:在線段上存在一點,使得平面

(2)求的長.

【答案】(1)證明見解析;(2)2.

【解析】試題分析:(1)的中點,連接,由正方形的性質(zhì)可證明四邊形為平行四邊形,故由線面平行的判定定理可得平面,就是符合條件的點;(2)由平面平面及可得平面可得,中,由余弦定理,得,由(1)得,根據(jù)勾股定理可得

試題解析:(1)取的中點,連接;

因為,

,所以,又四邊形是正方形,所以 ,

故四邊形為平行四邊形,故

因為平面, 平面

所以平面

(2)因為平面平面,四邊形為正方形,所以

所以平面

中,因為,故,又,

所以由余弦定理,得,由(1)得

【方法點晴】本題主要考查線面平行的判定定理、面面垂直的性質(zhì)定理,屬于難題. 證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1若關(guān)于的方程上恒成立,求的值;

2)證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了鼓勵學(xué)生熱心公益,服務(wù)社會,成立了“慈善義工社”.2017年12月,該!按壬屏x工社”為學(xué)生提供了4次參加公益活動的機會,學(xué)生可通過網(wǎng)路平臺報名參加活動.為了解學(xué)生實際參加這4次活動的情況,該校隨機抽取100名學(xué)生進行調(diào)查,數(shù)據(jù)統(tǒng)計如下表,其中“√”表示參加,“×”表示未參加.

(Ⅰ)從該校所有學(xué)生中任取一人,試估計其2017年12月恰參加了2次學(xué)校組織的公益活動的概率;

(Ⅱ)若在已抽取的100名學(xué)生中,2017年12月恰參加了1次活動的學(xué)生比4次活動均未參加的學(xué)生多17人,求的值;

(Ⅲ)若學(xué)生參加每次公益活動可獲得10個公益積分,試估計該校4000名學(xué)生中,2017年12月獲得的公益積分不少于30分的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), ……).

(1)令,若對任意的恒成立,求實數(shù)的值;

(2)在(1)的條件下,設(shè)為整數(shù),且對于任意正整數(shù), ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是圓O的直徑,點B在圓O上,∠BAC30°,BMAC于點MEA⊥平面ABC,FCEA,AC4,EA3,FC1.

(1)證明:EMBF;

(2)求平面BEF與平面ABC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,上頂點為,直線與直線垂直,橢圓經(jīng)過點

(1)求橢圓的標(biāo)準方程;

(2)過點作橢圓的兩條互相垂直的弦.若弦的中點分別為,證明:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于集合,定義了一種運算,使得集合中的元素間滿足條件:如果存在元素,使得對任意,都有,則稱元素是集合對運算的單位元素.例如: ,運算為普通乘法;存在,使得對任意,都有,所以元素是集合對普通乘法的單位元素.

下面給出三個集合及相應(yīng)的運算

,運算為普通減法;

{表示階矩陣, },運算為矩陣加法;

(其中是任意非空集合),運算為求兩個集合的交集.

其中對運算有單位元素的集合序號為( )

A. ①② B. ①③; C. ①②③; D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 為圓柱的母線, 是底面圓的直徑, 的中點.

(Ⅰ)問: 上是否存在點使得平面?請說明理由;

(Ⅱ)在(Ⅰ)的條件下,若平面,假設(shè)這個圓柱是一個大容器,有條體積可以忽略不計的小魚能在容器的任意地方游弋,如果小魚游到四棱錐外會有被捕的危險,求小魚被捕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓經(jīng)過為坐標(biāo)原點,線段的中點在圓上.

(1)求的方程;

(2)直線不過曲線的右焦點,與交于兩點,且與圓相切,切點在第一象限, 的周長是否為定值?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案