18.已知一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.$\sqrt{3}$D.2$\sqrt{3}$

分析 由三視圖可知:該幾何體是一個四棱錐,其中側(cè)面是正三角形,底面ABCD是正方形,且底面ABCD⊥側(cè)面PAB.利用體積計算公式即可得出.

解答 解:由三視圖可知:該幾何體是一個四棱錐,其中側(cè)面是正三角形,底面ABCD是正方形,且底面ABCD⊥側(cè)面PAB.
∴該幾何體的體積V=$\frac{1}{3}×{2}^{2}×\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
故選;B.

點評 本題考查了三視圖的有關計算、四棱錐的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.某中學舉辦電腦知識競賽,滿分為100分,80分以上為優(yōu)秀(含80分),現(xiàn)將高一兩個班參賽學生的成績進行整理后分成5組;第一組[50,60),第二組[60,70),第三組[70,80),第四組[80,90),第五組[90,100],其中第一、三、四、五小組的頻率分別為0.30、0.15、0.10、0.05,而第二小組的頻數(shù)是40,則參賽的人數(shù)以及成績優(yōu)秀的概率分別是( 。
A.50,0.15B.50,0.75C.100,0.15D.100,0.75

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.我國南北朝數(shù)學家何承天發(fā)明的“調(diào)日法”是程序化尋求精確分數(shù)來表示數(shù)值的算法,其理論依據(jù)是:設實數(shù)x的不足近似值和過剩近似值分別為$\frac{a}$和$\fractfkrycq{c}$(a,b,c,d∈N*),則$\frac{b+d}{a+c}$是x的更為精確的不足近似值或過剩近似值.我們知道π=3.14159…,若令$\frac{31}{10}$<π<$\frac{49}{15}$,則第一次用“調(diào)日法”后得$\frac{16}{5}$是π的更為精確的過剩近似值,即$\frac{31}{10}$<π<$\frac{16}{5}$,若每次都取最簡分數(shù),那么第四次用“調(diào)日法”后可得π的近似分數(shù)為( 。
A.$\frac{22}{7}$B.$\frac{63}{20}$C.$\frac{78}{25}$D.$\frac{109}{35}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.我國南北朝數(shù)學家何承天發(fā)明的“調(diào)日法”是程序化尋求精確分數(shù)來表示數(shù)值的算法,其理論依據(jù)是:設實數(shù)x的不足近似值和過剩近似值分別為$\frac{a}$和$\fracvcqtykp{c}$(a,b,c,d∈N*),則$\frac{b+d}{a+c}$是x的更為精確的不足近似值或過剩近似值,我們知道π=3.14159…,若令$\frac{31}{10}<π<\frac{49}{15}$,則第一次用“調(diào)日法”后得$\frac{16}{5}$是π的更為精確的過剩近似值,即$\frac{31}{10}<π<\frac{16}{5}$,若每次都取最簡分數(shù),那么第三次用“調(diào)日法”后可得π的近似分數(shù)為( 。
A.$\frac{22}{7}$B.$\frac{63}{20}$C.$\frac{78}{25}$D.$\frac{109}{35}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,棱長為3的正方體的頂點A在平面α上,三條棱AB,AC,AD都在平面α的同側(cè),若頂點B,C到平面α的距離分別為1,$\sqrt{2}$,則頂點D到平面α的距離是$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.32B.16C.$\frac{32}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=log2|x|-1.若a=f(-4),b=f(2sinθ),c=2f(sinθ),θ≠$\frac{kπ}{2}$,k∈Z,則a,b,c的大小關系為( 。
A.a>b>cB.c>b>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某三棱錐的三視圖如圖所示,則該三棱錐的四個面中,最大的面積是( 。
A.$\frac{{3\sqrt{5}}}{2}$B.$3\sqrt{6}$C.$2\sqrt{3}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.如圖,正方形ABCD的邊長為1,$\widehat{CE}$所對的圓心角∠CDE=90°,將圖形ABCE繞AE所在直線旋轉(zhuǎn)一周,形成的幾何體的表面積為5π.

查看答案和解析>>

同步練習冊答案