設(shè)雙曲線的一條漸近線與拋物線只有一個公共點,則雙曲線的離心率為(    )
A.B.5C.D.
D

分析:先根據(jù)雙曲線方程表示出漸近線方程與拋物線方程聯(lián)立,利用判別式等于0求得a和b的關(guān)系,進而求得a和c的關(guān)系,則雙曲線的離心率可得.
解:依題意可知雙曲線漸近線方程為y=±x,與拋物線方程聯(lián)立消去y得x2±x+1="0"
∵漸近線與拋物線有一個交點
∴△=-4=0,求得b2=4a2,
∴c==a
∴e==
故答案為:D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓(常數(shù)),點上的動點,是右頂點,定點的坐標為。
⑴若重合,求的焦點坐標;
⑵若,求的最大值與最小值;
⑶若的最小值為,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的3倍且經(jīng)過點M(3,1).平行于OM的直線l在y軸上的截距為m(m≠0),且交橢圓于A,B兩不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為雙曲線=1的右支上一點,分別是圓上的點,則的最大值為
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.光線被曲線反射,等效于被曲線在反射點處的切線反射.已知光線從橢圓的一個焦點出發(fā),被橢圓反射后要回到橢圓的另一個焦點;光線從雙曲線的一個焦點出發(fā)被雙曲線反射后的反射光線等效于從另一個焦點發(fā)出;如題10圖,橢圓與雙曲線有公共焦點,現(xiàn)一光線從它們的左焦點出發(fā),在橢圓與雙曲線間連續(xù)反射,則光線經(jīng)過次反射后回到左焦點所經(jīng)過的路徑長為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知點(x, y) 在曲線C上,將此點的縱坐標變?yōu)樵瓉淼?倍,對應(yīng)的橫坐標不變,得到的點滿足方程;定點M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),直線與曲線C交于A、B兩個不同點.
(1)求曲線的方程;             
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標系xOy中,點A(4,0)、B(1,0),動點P滿足
(1)求點P的軌跡C的方程;
(2)若直線與軌跡C相交于M、N兩點,直線與軌跡C相交于P、Q
兩點,順次連接M,N,P,Q得到的四邊形MNPQ是棱形,求b。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列四個關(guān)于圓錐曲線的命題:
①已知M(-2,0)、N(2,0),|PM|+|PN|=3,則動點P的軌跡是一條線段;
②從雙曲線的一個焦點到一條漸近線的距離等于它的虛半軸長;
③雙曲線與橢圓有共同的準線;
④關(guān)于x的方程x2-mx+1=0(m>2)的兩根可分別作為橢圓和雙曲線的離心率.
其中正確的命題是        .(填上你認為正確的所有命題序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,短軸的一個端點到右焦點的距離為.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓c交于A、B兩點,坐標原點O到直線的距離為,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案