【題目】已知正六棱錐的底面邊長為,高為.現(xiàn)從該棱錐的個頂點中隨機選取個點構(gòu)成三角形,設(shè)隨機變量表示所得三角形的面積.

(1)求概率的值;

(2)求的分布列,并求其數(shù)學期望

【答案】(1) .

(2)分布列見解析,.

【解析】分析:(1)從個頂點中隨機選取個點構(gòu)成三角形,共有種取法,其中面積的三角形有由古典概型概率公式可得結(jié)果;(2)的可能取值根據(jù)古典概型概率公式可求得隨機變量對應的概率,從而可得分布列,進而利用期望公式可得其數(shù)學期望

詳解(1)從個頂點中隨機選取個點構(gòu)成三角形,

共有種取法,其中的三角形如

這類三角形共有

因此.

(2)由題意,的可能取值為

其中的三角形如,這類三角形共有個;

其中的三角形有兩類,,如個),個),共有個;

其中的三角形如,這類三角形共有個;

其中的三角形如,這類三角形共有個;

其中的三角形如,這類三角形共有個;

因此

所以隨機變量的概率分布列為:

所求數(shù)學期望

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足對于任意實數(shù),都有,且當時,

1)判斷的奇偶性并證明;

2)判斷的單調(diào)性,并求當時,的最大值及最小值;

3)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且,若函數(shù)6 個零點,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ABC的頂點坐標分別是A7,﹣3),B2,﹣8),C51),

1)求AB垂直平分線的方程(化為一般式);

2)求ABC外接圓的方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】RtABC中,∠B90°BC6,AB8,點MABC內(nèi)切圓的圓心,過點M作動直線l與線段ABAC都相交,將ABC沿動直線l翻折,使翻折后的點A在平面BCM上的射影P落在直線BC上,點A在直線l上的射影為Q,則的最小值為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12分)設(shè)數(shù)列{an}是公比為正數(shù)的等比數(shù)列,a1=2,a3﹣a2=12

1)求數(shù)列{an}的通項公式;

2)設(shè)數(shù)列{bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠每日生產(chǎn)一種產(chǎn)品噸,每日生產(chǎn)的產(chǎn)品當日銷售完畢,日銷售額為萬元,產(chǎn)品價格隨著產(chǎn)量變化而有所變化,經(jīng)過段時間的產(chǎn)銷, 得到了的一組統(tǒng)計數(shù)據(jù)如下表:

日產(chǎn)量

1

2

3

4

5

日銷售量

5

12

16

19

21

(1)請判斷中,哪個模型更適合到畫之間的關(guān)系?可從函數(shù)增長趨勢方面給出簡單的理由;

(2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并估計當日產(chǎn)量時,日銷售額是多少?

參考數(shù)據(jù):,

線性回歸方程中,,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=logax+a)(a0a≠1)的圖象過點(﹣1,0),gx)=fx+f(﹣x).

(Ⅰ)求函數(shù)gx)的定義域;

(Ⅱ)寫出函數(shù)gx)的單調(diào)區(qū)間,并求gx)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了分析在一次數(shù)學競賽中甲、乙兩個班的數(shù)學成績,分別從甲、乙兩個班中隨機抽取了10個學生的成績,成績的莖葉圖如下:

)根據(jù)莖葉圖,計算甲班被抽取學生成績的平均值及方差

)若規(guī)定成績不低于90分的等級為優(yōu)秀,現(xiàn)從甲、乙兩個班級所抽取成績等級為優(yōu)秀的學生中,隨機抽取2人,求這兩個人恰好都來自甲班的概率.

查看答案和解析>>

同步練習冊答案